mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-07-27 16:26:39 +00:00
144 lines
5.0 KiB
Python
144 lines
5.0 KiB
Python
"""
|
|
This file is part of ComfyUI.
|
|
Copyright (C) 2024 Stability AI
|
|
|
|
This program is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program. If not, see <https://www.gnu.org/licenses/>.
|
|
"""
|
|
|
|
import torch
|
|
|
|
import comfy.utils
|
|
import nodes
|
|
from comfy_api.v3 import io
|
|
|
|
|
|
class StableCascade_EmptyLatentImage(io.ComfyNodeV3):
|
|
@classmethod
|
|
def define_schema(cls):
|
|
return io.Schema(
|
|
node_id="StableCascade_EmptyLatentImage_V3",
|
|
category="latent/stable_cascade",
|
|
inputs=[
|
|
io.Int.Input("width", default=1024, min=256, max=nodes.MAX_RESOLUTION, step=8),
|
|
io.Int.Input("height", default=1024, min=256, max=nodes.MAX_RESOLUTION, step=8),
|
|
io.Int.Input("compression", default=42, min=4, max=128, step=1),
|
|
io.Int.Input("batch_size", default=1, min=1, max=4096),
|
|
],
|
|
outputs=[
|
|
io.Latent.Output(display_name="stage_c"),
|
|
io.Latent.Output(display_name="stage_b"),
|
|
],
|
|
)
|
|
|
|
@classmethod
|
|
def execute(cls, width, height, compression, batch_size=1):
|
|
c_latent = torch.zeros([batch_size, 16, height // compression, width // compression])
|
|
b_latent = torch.zeros([batch_size, 4, height // 4, width // 4])
|
|
return io.NodeOutput({"samples": c_latent}, {"samples": b_latent})
|
|
|
|
|
|
class StableCascade_StageC_VAEEncode(io.ComfyNodeV3):
|
|
@classmethod
|
|
def define_schema(cls):
|
|
return io.Schema(
|
|
node_id="StableCascade_StageC_VAEEncode_V3",
|
|
category="latent/stable_cascade",
|
|
inputs=[
|
|
io.Image.Input("image"),
|
|
io.Vae.Input("vae"),
|
|
io.Int.Input("compression", default=42, min=4, max=128, step=1),
|
|
],
|
|
outputs=[
|
|
io.Latent.Output(display_name="stage_c"),
|
|
io.Latent.Output(display_name="stage_b"),
|
|
],
|
|
)
|
|
|
|
@classmethod
|
|
def execute(cls, image, vae, compression):
|
|
width = image.shape[-2]
|
|
height = image.shape[-3]
|
|
out_width = (width // compression) * vae.downscale_ratio
|
|
out_height = (height // compression) * vae.downscale_ratio
|
|
|
|
s = comfy.utils.common_upscale(image.movedim(-1, 1), out_width, out_height, "bicubic", "center").movedim(1, -1)
|
|
|
|
c_latent = vae.encode(s[:, :, :, :3])
|
|
b_latent = torch.zeros([c_latent.shape[0], 4, (height // 8) * 2, (width // 8) * 2])
|
|
return io.NodeOutput({"samples": c_latent}, {"samples": b_latent})
|
|
|
|
|
|
class StableCascade_StageB_Conditioning(io.ComfyNodeV3):
|
|
@classmethod
|
|
def define_schema(cls):
|
|
return io.Schema(
|
|
node_id="StableCascade_StageB_Conditioning_V3",
|
|
category="conditioning/stable_cascade",
|
|
inputs=[
|
|
io.Conditioning.Input("conditioning"),
|
|
io.Latent.Input("stage_c"),
|
|
],
|
|
outputs=[
|
|
io.Conditioning.Output(),
|
|
],
|
|
)
|
|
|
|
@classmethod
|
|
def execute(cls, conditioning, stage_c):
|
|
c = []
|
|
for t in conditioning:
|
|
d = t[1].copy()
|
|
d["stable_cascade_prior"] = stage_c["samples"]
|
|
n = [t[0], d]
|
|
c.append(n)
|
|
return io.NodeOutput(c)
|
|
|
|
|
|
class StableCascade_SuperResolutionControlnet(io.ComfyNodeV3):
|
|
@classmethod
|
|
def define_schema(cls):
|
|
return io.Schema(
|
|
node_id="StableCascade_SuperResolutionControlnet_V3",
|
|
category="_for_testing/stable_cascade",
|
|
is_experimental=True,
|
|
inputs=[
|
|
io.Image.Input("image"),
|
|
io.Vae.Input("vae"),
|
|
],
|
|
outputs=[
|
|
io.Image.Output(display_name="controlnet_input"),
|
|
io.Latent.Output(display_name="stage_c"),
|
|
io.Latent.Output(display_name="stage_b"),
|
|
],
|
|
)
|
|
|
|
@classmethod
|
|
def execute(cls, image, vae):
|
|
width = image.shape[-2]
|
|
height = image.shape[-3]
|
|
batch_size = image.shape[0]
|
|
controlnet_input = vae.encode(image[:, :, :, :3]).movedim(1, -1)
|
|
|
|
c_latent = torch.zeros([batch_size, 16, height // 16, width // 16])
|
|
b_latent = torch.zeros([batch_size, 4, height // 2, width // 2])
|
|
return io.NodeOutput(controlnet_input, {"samples": c_latent}, {"samples": b_latent})
|
|
|
|
|
|
NODES_LIST: list[type[io.ComfyNodeV3]] = [
|
|
StableCascade_EmptyLatentImage,
|
|
StableCascade_StageB_Conditioning,
|
|
StableCascade_StageC_VAEEncode,
|
|
StableCascade_SuperResolutionControlnet,
|
|
]
|