""" This file is part of ComfyUI. Copyright (C) 2024 Stability AI This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . """ import torch import comfy.utils import nodes from comfy_api.v3 import io class StableCascade_EmptyLatentImage(io.ComfyNodeV3): @classmethod def define_schema(cls): return io.Schema( node_id="StableCascade_EmptyLatentImage_V3", category="latent/stable_cascade", inputs=[ io.Int.Input("width", default=1024, min=256, max=nodes.MAX_RESOLUTION, step=8), io.Int.Input("height", default=1024, min=256, max=nodes.MAX_RESOLUTION, step=8), io.Int.Input("compression", default=42, min=4, max=128, step=1), io.Int.Input("batch_size", default=1, min=1, max=4096), ], outputs=[ io.Latent.Output(display_name="stage_c"), io.Latent.Output(display_name="stage_b"), ], ) @classmethod def execute(cls, width, height, compression, batch_size=1): c_latent = torch.zeros([batch_size, 16, height // compression, width // compression]) b_latent = torch.zeros([batch_size, 4, height // 4, width // 4]) return io.NodeOutput({"samples": c_latent}, {"samples": b_latent}) class StableCascade_StageC_VAEEncode(io.ComfyNodeV3): @classmethod def define_schema(cls): return io.Schema( node_id="StableCascade_StageC_VAEEncode_V3", category="latent/stable_cascade", inputs=[ io.Image.Input("image"), io.Vae.Input("vae"), io.Int.Input("compression", default=42, min=4, max=128, step=1), ], outputs=[ io.Latent.Output(display_name="stage_c"), io.Latent.Output(display_name="stage_b"), ], ) @classmethod def execute(cls, image, vae, compression): width = image.shape[-2] height = image.shape[-3] out_width = (width // compression) * vae.downscale_ratio out_height = (height // compression) * vae.downscale_ratio s = comfy.utils.common_upscale(image.movedim(-1, 1), out_width, out_height, "bicubic", "center").movedim(1, -1) c_latent = vae.encode(s[:, :, :, :3]) b_latent = torch.zeros([c_latent.shape[0], 4, (height // 8) * 2, (width // 8) * 2]) return io.NodeOutput({"samples": c_latent}, {"samples": b_latent}) class StableCascade_StageB_Conditioning(io.ComfyNodeV3): @classmethod def define_schema(cls): return io.Schema( node_id="StableCascade_StageB_Conditioning_V3", category="conditioning/stable_cascade", inputs=[ io.Conditioning.Input("conditioning"), io.Latent.Input("stage_c"), ], outputs=[ io.Conditioning.Output(), ], ) @classmethod def execute(cls, conditioning, stage_c): c = [] for t in conditioning: d = t[1].copy() d["stable_cascade_prior"] = stage_c["samples"] n = [t[0], d] c.append(n) return io.NodeOutput(c) class StableCascade_SuperResolutionControlnet(io.ComfyNodeV3): @classmethod def define_schema(cls): return io.Schema( node_id="StableCascade_SuperResolutionControlnet_V3", category="_for_testing/stable_cascade", is_experimental=True, inputs=[ io.Image.Input("image"), io.Vae.Input("vae"), ], outputs=[ io.Image.Output(display_name="controlnet_input"), io.Latent.Output(display_name="stage_c"), io.Latent.Output(display_name="stage_b"), ], ) @classmethod def execute(cls, image, vae): width = image.shape[-2] height = image.shape[-3] batch_size = image.shape[0] controlnet_input = vae.encode(image[:, :, :, :3]).movedim(1, -1) c_latent = torch.zeros([batch_size, 16, height // 16, width // 16]) b_latent = torch.zeros([batch_size, 4, height // 2, width // 2]) return io.NodeOutput(controlnet_input, {"samples": c_latent}, {"samples": b_latent}) NODES_LIST: list[type[io.ComfyNodeV3]] = [ StableCascade_EmptyLatentImage, StableCascade_StageB_Conditioning, StableCascade_StageC_VAEEncode, StableCascade_SuperResolutionControlnet, ]