Fix XPU iGPU regressions (#9322)

* Change bf16 check and switch non-blocking to off default with option to force to regain speed on certain classes of iGPUs and refactor xpu check.

* Turn non_blocking off by default for xpu.

* Update README.md for Intel GPUs.
This commit is contained in:
Simon Lui
2025-08-13 16:13:35 -07:00
committed by GitHub
parent 9df8792d4b
commit c991a5da65
3 changed files with 25 additions and 26 deletions

View File

@@ -39,7 +39,7 @@ ComfyUI lets you design and execute advanced stable diffusion pipelines using a
## Get Started
#### [Desktop Application](https://www.comfy.org/download)
- The easiest way to get started.
- The easiest way to get started.
- Available on Windows & macOS.
#### [Windows Portable Package](#installing)
@@ -211,27 +211,19 @@ This is the command to install the nightly with ROCm 6.4 which might have some p
### Intel GPUs (Windows and Linux)
(Option 1) Intel Arc GPU users can install native PyTorch with torch.xpu support using pip (currently available in PyTorch nightly builds). More information can be found [here](https://pytorch.org/docs/main/notes/get_start_xpu.html)
1. To install PyTorch nightly, use the following command:
(Option 1) Intel Arc GPU users can install native PyTorch with torch.xpu support using pip. More information can be found [here](https://pytorch.org/docs/main/notes/get_start_xpu.html)
1. To install PyTorch xpu, use the following command:
```pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/xpu```
This is the command to install the Pytorch xpu nightly which might have some performance improvements:
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/xpu```
2. Launch ComfyUI by running `python main.py`
(Option 2) Alternatively, Intel GPUs supported by Intel Extension for PyTorch (IPEX) can leverage IPEX for improved performance.
1. For Intel® Arc™ A-Series Graphics utilizing IPEX, create a conda environment and use the commands below:
```
conda install libuv
pip install torch==2.3.1.post0+cxx11.abi torchvision==0.18.1.post0+cxx11.abi torchaudio==2.3.1.post0+cxx11.abi intel-extension-for-pytorch==2.3.110.post0+xpu --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/us/ --extra-index-url https://pytorch-extension.intel.com/release-whl/stable/xpu/cn/
```
For other supported Intel GPUs with IPEX, visit [Installation](https://intel.github.io/intel-extension-for-pytorch/index.html#installation?platform=gpu) for more information.
Additional discussion and help can be found [here](https://github.com/comfyanonymous/ComfyUI/discussions/476).
1. visit [Installation](https://intel.github.io/intel-extension-for-pytorch/index.html#installation?platform=gpu) for more information.
### NVIDIA
@@ -352,7 +344,7 @@ Generate a self-signed certificate (not appropriate for shared/production use) a
Use `--tls-keyfile key.pem --tls-certfile cert.pem` to enable TLS/SSL, the app will now be accessible with `https://...` instead of `http://...`.
> Note: Windows users can use [alexisrolland/docker-openssl](https://github.com/alexisrolland/docker-openssl) or one of the [3rd party binary distributions](https://wiki.openssl.org/index.php/Binaries) to run the command example above.
> Note: Windows users can use [alexisrolland/docker-openssl](https://github.com/alexisrolland/docker-openssl) or one of the [3rd party binary distributions](https://wiki.openssl.org/index.php/Binaries) to run the command example above.
<br/><br/>If you use a container, note that the volume mount `-v` can be a relative path so `... -v ".\:/openssl-certs" ...` would create the key & cert files in the current directory of your command prompt or powershell terminal.
## Support and dev channel

View File

@@ -132,6 +132,8 @@ parser.add_argument("--reserve-vram", type=float, default=None, help="Set the am
parser.add_argument("--async-offload", action="store_true", help="Use async weight offloading.")
parser.add_argument("--force-non-blocking", action="store_true", help="Force ComfyUI to use non-blocking operations for all applicable tensors. This may improve performance on some non-Nvidia systems but can cause issues with some workflows.")
parser.add_argument("--default-hashing-function", type=str, choices=['md5', 'sha1', 'sha256', 'sha512'], default='sha256', help="Allows you to choose the hash function to use for duplicate filename / contents comparison. Default is sha256.")
parser.add_argument("--disable-smart-memory", action="store_true", help="Force ComfyUI to agressively offload to regular ram instead of keeping models in vram when it can.")

View File

@@ -78,7 +78,6 @@ try:
torch_version = torch.version.__version__
temp = torch_version.split(".")
torch_version_numeric = (int(temp[0]), int(temp[1]))
xpu_available = (torch_version_numeric[0] < 2 or (torch_version_numeric[0] == 2 and torch_version_numeric[1] <= 4)) and torch.xpu.is_available()
except:
pass
@@ -102,10 +101,14 @@ if args.directml is not None:
try:
import intel_extension_for_pytorch as ipex # noqa: F401
_ = torch.xpu.device_count()
xpu_available = xpu_available or torch.xpu.is_available()
except:
xpu_available = xpu_available or (hasattr(torch, "xpu") and torch.xpu.is_available())
pass
try:
_ = torch.xpu.device_count()
xpu_available = torch.xpu.is_available()
except:
xpu_available = False
try:
if torch.backends.mps.is_available():
@@ -946,10 +949,12 @@ def pick_weight_dtype(dtype, fallback_dtype, device=None):
return dtype
def device_supports_non_blocking(device):
if args.force_non_blocking:
return True
if is_device_mps(device):
return False #pytorch bug? mps doesn't support non blocking
if is_intel_xpu():
return True
if is_intel_xpu(): #xpu does support non blocking but it is slower on iGPUs for some reason so disable by default until situation changes
return False
if args.deterministic: #TODO: figure out why deterministic breaks non blocking from gpu to cpu (previews)
return False
if directml_enabled:
@@ -1282,10 +1287,10 @@ def should_use_bf16(device=None, model_params=0, prioritize_performance=True, ma
return False
if is_intel_xpu():
if torch_version_numeric < (2, 6):
if torch_version_numeric < (2, 3):
return True
else:
return torch.xpu.get_device_capability(device)['has_bfloat16_conversions']
return torch.xpu.is_bf16_supported()
if is_ascend_npu():
return True