mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-09-10 19:46:38 +00:00
Implement Sortblock for single cond usage
This commit is contained in:
@@ -1,15 +1,24 @@
|
||||
from __future__ import annotations
|
||||
from typing import TYPE_CHECKING, Union
|
||||
|
||||
from scipy.sparse.linalg._dsolve.linsolve import is_pydata_spmatrix
|
||||
from comfy_api.latest import io, ComfyExtension
|
||||
import comfy.patcher_extension
|
||||
import logging
|
||||
import torch
|
||||
import math
|
||||
import comfy.model_patcher
|
||||
if TYPE_CHECKING:
|
||||
from uuid import UUID
|
||||
|
||||
|
||||
def prepare_noise_wrapper(executor, *args, **kwargs):
|
||||
try:
|
||||
return executor(*args, **kwargs)
|
||||
finally:
|
||||
sb_holder: SortblockHolder = executor.class_obj.model_options["transformer_options"]["sortblock"]
|
||||
sb_holder.step_count += 1
|
||||
|
||||
|
||||
def outer_sample_wrapper(executor, *args, **kwargs):
|
||||
try:
|
||||
logging.info("Sortblock: inside outer_sample!")
|
||||
@@ -17,302 +26,330 @@ def outer_sample_wrapper(executor, *args, **kwargs):
|
||||
orig_model_options = guider.model_options
|
||||
guider.model_options = comfy.model_patcher.create_model_options_clone(orig_model_options)
|
||||
# clone and prepare timesteps
|
||||
guider.model_options["transformer_options"]["sortblock"] = guider.model_options["transformer_options"]["sortblock"].clone().prepare_timesteps(guider.model_patcher.model.model_sampling)
|
||||
sb_holder = guider.model_options["transformer_options"]["sortblock"]
|
||||
guider.model_options["transformer_options"]["sortblock"] = sb_holder.clone().prepare_timesteps(guider.model_patcher.model.model_sampling)
|
||||
sb_holder: SortblockHolder = guider.model_options["transformer_options"]["sortblock"]
|
||||
logging.info(f"Sortblock: enabled - threshold: {sb_holder.reuse_threshold}, start_percent: {sb_holder.start_percent}, end_percent: {sb_holder.end_percent}")
|
||||
logging.info(f"Sortblock: enabled - threshold: {sb_holder.predict_ratio}, start_percent: {sb_holder.start_percent}, end_percent: {sb_holder.end_percent}")
|
||||
return executor(*args, **kwargs)
|
||||
finally:
|
||||
sb_holder = guider.model_options["transformer_options"]["sortblock"]
|
||||
sb_holder.print_block_info(0)
|
||||
|
||||
# import plotly.express as px
|
||||
# fig = px.line(x=list(range(len(sb_holder.blocks))), y=[getattr(block, "__block_cache").cumulative_change_rate for block in sb_holder.blocks])
|
||||
|
||||
|
||||
logging.info(f"Sortblock: final step count: {sb_holder.step_count}")
|
||||
sb_holder.reset()
|
||||
guider.model_options = orig_model_options
|
||||
|
||||
|
||||
def model_forward_wrapper(executor, *args, **kwargs):
|
||||
timestep: float = args[1]
|
||||
# TODO: make work with batches of conds
|
||||
transformer_options: dict[str] = args[-1]
|
||||
if not isinstance(transformer_options, dict):
|
||||
transformer_options = kwargs.get("transformer_options")
|
||||
if not transformer_options:
|
||||
transformer_options = args[-2]
|
||||
logging.info(f"Sortblock: inside model {executor.class_obj.__class__.__name__}")
|
||||
sigmas = transformer_options["sigmas"]
|
||||
sb_holder: SortblockHolder = transformer_options["sortblock"]
|
||||
sb_holder.update_should_do_sortblock(timestep)
|
||||
sb_holder.update_is_past_end_timestep(timestep)
|
||||
sb_holder.update_should_do_sortblock(sigmas)
|
||||
|
||||
# if initial step, prepare everything for Sortblock
|
||||
if sb_holder.initial_step:
|
||||
transformer_options["total_double_block"] = len(executor.class_obj.double_blocks)
|
||||
transformer_options["total_single_block"] = len(executor.class_obj.single_blocks)
|
||||
# save the original forwards on the blocks
|
||||
logging.info(f"Sortblock: preparing {transformer_options['total_double_block']} double blocks and {transformer_options['total_single_block']} single blocks")
|
||||
for block in executor.class_obj.double_blocks:
|
||||
prepare_block(block, sb_holder)
|
||||
for block in executor.class_obj.single_blocks:
|
||||
prepare_block(block, sb_holder)
|
||||
try:
|
||||
return executor(*args, **kwargs)
|
||||
finally:
|
||||
logging.info(f"Sortblock: inside model {executor.class_obj.__class__.__name__}")
|
||||
# TODO: generalize for other models
|
||||
# these won't stick around past this step; should store on sb_holder instead
|
||||
logging.info(f"Sortblock: preparing {len(executor.class_obj.double_blocks)} double blocks and {len(executor.class_obj.single_blocks)} single blocks")
|
||||
if hasattr(executor.class_obj, "double_blocks"):
|
||||
for block in executor.class_obj.double_blocks:
|
||||
prepare_block(block, sb_holder)
|
||||
if hasattr(executor.class_obj, "single_blocks"):
|
||||
for block in executor.class_obj.single_blocks:
|
||||
prepare_block(block, sb_holder)
|
||||
if hasattr(executor.class_obj, "blocks"):
|
||||
for block in executor.class_obj.block:
|
||||
prepare_block(block, sb_holder)
|
||||
|
||||
# when 0: Initialization(1)
|
||||
if sb_holder.step_modulus == 0:
|
||||
logging.info(f"Sortblock: for step {sb_holder.step_count}, all blocks are marked for recomputation")
|
||||
# all features are computed, input-outputs changes for all DiT blocks are stored for relative step 'k'
|
||||
sb_holder.activated_steps.append(sb_holder.step_count)
|
||||
for block in sb_holder.all_blocks:
|
||||
cache: BlockCache = block.__block_cache
|
||||
cache.mark_recompute()
|
||||
|
||||
# all block operations are performed in forward pass of model
|
||||
to_return = executor(*args, **kwargs)
|
||||
|
||||
# when 1: Select DiT blocks(4)
|
||||
if sb_holder.step_modulus == 1:
|
||||
logging.info(f"Sortblock: for step {sb_holder.step_count}, selecting blocks for recomputation and prediction")
|
||||
predict_ratio = 1.0 - sb_holder.predict_ratio
|
||||
for block_type, blocks in sb_holder.blocks_per_type.items():
|
||||
sorted_blocks = sorted(blocks, key=lambda x: x.__block_cache.cosine_similarity)
|
||||
threshold_index = int(len(sorted_blocks) * predict_ratio)
|
||||
# blocks with lower similarity are marked for recomputation
|
||||
for block in sorted_blocks[:threshold_index]:
|
||||
cache: BlockCache = block.__block_cache
|
||||
cache.mark_recompute()
|
||||
# blocks with higher similarity are marked for prediction
|
||||
for block in sorted_blocks[threshold_index:]:
|
||||
cache: BlockCache = block.__block_cache
|
||||
cache.mark_predict()
|
||||
logging.info(f"Sortblock: for {block_type}, selected {len(sorted_blocks[:threshold_index])} blocks for recomputation and {len(sorted_blocks[threshold_index:])} blocks for prediction")
|
||||
|
||||
if sb_holder.initial_step:
|
||||
sb_holder.initial_step = False
|
||||
return to_return
|
||||
|
||||
def block_forward_factory(func, block):
|
||||
def block_forward_wrapper(*args, **kwargs):
|
||||
transformer_options: dict[str] = kwargs.get("transformer_options")
|
||||
sb_holder: SortblockHolder = transformer_options["sortblock"]
|
||||
# do double blocks
|
||||
total_double_block = len(executor.class_obj.double_blocks)
|
||||
total_single_block = len(executor.class_obj.single_blocks)
|
||||
perform_sortblock(sb_holder.blocks[:total_double_block])
|
||||
perform_sortblock(sb_holder.blocks[total_double_block:])
|
||||
cache: BlockCache = block.__block_cache
|
||||
# make sure stream count is properly set for this block
|
||||
if sb_holder.initial_step:
|
||||
sb_holder.initial_step = False
|
||||
sb_holder.add_to_blocks_per_type(block, transformer_options['block'][0])
|
||||
cache.block_index = transformer_options['block'][1]
|
||||
cache.stream_count = transformer_options['block'][2]
|
||||
# do sortblock stuff
|
||||
if cache.recompute and sb_holder.step_modulus != 1:
|
||||
# clone relevant inputs
|
||||
orig_inputs = cache.get_orig_inputs(args, kwargs, clone=True)
|
||||
# get block outputs
|
||||
# NOTE: output_raw is expected to have cache.stream_count elements if count is greaater than 1 (double block, etc.)
|
||||
if cache.stream_count == 1:
|
||||
zzz = 10
|
||||
output_raw: Union[torch.Tensor, tuple[torch.Tensor, ...]] = func(*args, **kwargs)
|
||||
# perform derivative approximation;
|
||||
cache.derivative_approximation(sb_holder, output_raw, orig_inputs)
|
||||
# if step_modulus is 0, input-output changes for DiT block are stored
|
||||
if sb_holder.step_modulus == 0:
|
||||
cache.cache_previous_residual(output_raw, orig_inputs)
|
||||
else:
|
||||
# if not to recompute, predict features for current timestep
|
||||
orig_inputs = cache.get_orig_inputs(args, kwargs, clone=False)
|
||||
# when 1: Linear Prediction(2)
|
||||
# if step_modulus is 1, store block residuals as 'current' after applying taylor_formula
|
||||
if sb_holder.step_modulus == 1:
|
||||
cache.cache_current_residual(sb_holder)
|
||||
# based on features computed in last timestep, all features for current timestep are predicted using Eq. 4,
|
||||
# input-output changes for all DiT blocks are stored for relative step 'k+1'
|
||||
output_raw = cache.apply_linear_prediction(sb_holder, orig_inputs)
|
||||
|
||||
# when 1: Identify Changes(3)
|
||||
if sb_holder.step_modulus == 1:
|
||||
# based on features computed in last timestep, all features for current timestep are predicted using Eq. 4,
|
||||
# input-output changes for all DiT blocks are stored for relative step 'k+1'
|
||||
cache.calculate_cosine_similarity()
|
||||
|
||||
# return output_raw
|
||||
return output_raw
|
||||
return block_forward_wrapper
|
||||
|
||||
|
||||
def perform_sortblock(blocks: list):
|
||||
candidate_blocks = []
|
||||
for block in blocks:
|
||||
cache: BlockCache = getattr(block, "__block_cache")
|
||||
cache.allowed_to_skip = False
|
||||
if cache.want_to_skip:
|
||||
candidate_blocks.append(block)
|
||||
if len(candidate_blocks) > 0:
|
||||
percentage_to_skip = 1.0
|
||||
candidate_blocks.sort(key=lambda x: getattr(x, "__block_cache").cumulative_change_rate)
|
||||
blocks_to_skip = int(len(candidate_blocks) * percentage_to_skip)
|
||||
for block in candidate_blocks[:blocks_to_skip]:
|
||||
cache: BlockCache = getattr(block, "__block_cache")
|
||||
cache.allowed_to_skip = True
|
||||
|
||||
|
||||
...
|
||||
|
||||
def prepare_block(block, sb_holder: SortblockHolder, stream_count: int=1):
|
||||
sb_holder.add_block(block)
|
||||
sb_holder.add_to_all_blocks(block)
|
||||
block.__original_forward = block.forward
|
||||
block.forward = block_forward_factory(block.__original_forward, block)
|
||||
block.__block_cache = BlockCache(subsample_factor=sb_holder.subsample_factor, verbose=sb_holder.verbose)
|
||||
|
||||
|
||||
def clean_block(block):
|
||||
block.forward = block.__original_forward
|
||||
del block.__original_forward
|
||||
del block.__block_cache
|
||||
|
||||
def subsample(x: torch.Tensor, factor: int, clone: bool=True) -> torch.Tensor:
|
||||
if factor > 1:
|
||||
to_return = x[..., ::factor, ::factor]
|
||||
if clone:
|
||||
return to_return.clone()
|
||||
return to_return
|
||||
if clone:
|
||||
return x.clone()
|
||||
return x
|
||||
|
||||
def block_forward_factory(func, block):
|
||||
def block_forward_wrapper(*args, **kwargs):
|
||||
transformer_options: dict[str] = kwargs.get("transformer_options", None)
|
||||
#logging.info(f"Sortblock: inside block {transformer_options['block']}")
|
||||
sb_holder: SortblockHolder = transformer_options["sortblock"]
|
||||
cache: BlockCache = block.__block_cache
|
||||
if sb_holder.initial_step:
|
||||
cache.stream_count = transformer_options['block'][2]
|
||||
if sb_holder.is_past_end_timestep():
|
||||
return func(*args, **kwargs)
|
||||
# do sortblock stuff
|
||||
keys = list(kwargs.keys())
|
||||
x = cache.get_next_x_prev(kwargs)
|
||||
timestep: float = sb_holder.curr_t
|
||||
# prepare next_x_prev
|
||||
next_x_prev = cache.get_next_x_prev(kwargs, clone=True)
|
||||
input_change = None
|
||||
do_sortblock = sb_holder.should_do_sortblock()
|
||||
if do_sortblock:
|
||||
# TODO: checkmetadata
|
||||
if cache.has_x_prev_subsampled():
|
||||
input_change = (cache.subsample(x, clone=False) - cache.x_prev_subsampled).flatten().abs().mean()
|
||||
if cache.has_output_prev_norm() and cache.has_relative_transformation_rate():
|
||||
approx_output_change_rate = (cache.relative_transformation_rate * input_change) / cache.output_prev_norm
|
||||
cache.cumulative_change_rate += approx_output_change_rate
|
||||
if cache.cumulative_change_rate < sb_holder.reuse_threshold:
|
||||
# accumulate error + skip block
|
||||
# cache.want_to_skip = True
|
||||
# if cache.allowed_to_skip:
|
||||
# return cache.apply_cache_diff(x)
|
||||
pass
|
||||
else:
|
||||
# reset error; NOT skipping block and recalculating
|
||||
cache.cumulative_change_rate = 0.0
|
||||
cache.want_to_skip = False
|
||||
# output_raw is expected to have cache.stream_count elements if count is greaater than 1 (double block, etc.)
|
||||
output_raw: Union[torch.Tensor, tuple[torch.Tensor, ...]] = func(*args, **kwargs)
|
||||
# if more than one stream from block, only use first one
|
||||
class BlockCache:
|
||||
def __init__(self, subsample_factor: int=8, verbose: bool=False):
|
||||
self.subsample_factor = subsample_factor
|
||||
self.verbose = verbose
|
||||
self.stream_count = 1
|
||||
self.recompute = False
|
||||
self.block_index = 0
|
||||
# cached values
|
||||
self.previous_residual_subsampled: torch.Tensor = None
|
||||
self.current_residual_subsampled: torch.Tensor = None
|
||||
self.cosine_similarity: float = None
|
||||
self.previous_taylor_factors: dict[int, torch.Tensor] = {}
|
||||
self.current_taylor_factors: dict[int, torch.Tensor] = {}
|
||||
|
||||
def mark_recompute(self):
|
||||
self.recompute = True
|
||||
|
||||
def mark_predict(self):
|
||||
self.recompute = False
|
||||
|
||||
def cache_previous_residual(self, output_raw: Union[torch.Tensor, tuple[torch.Tensor, ...]], orig_inputs: Union[torch.Tensor, tuple[torch.Tensor, ...]]):
|
||||
if isinstance(output_raw, tuple):
|
||||
output = output_raw[0]
|
||||
else:
|
||||
output = output_raw
|
||||
if cache.has_output_prev_norm():
|
||||
output_change = (cache.subsample(output, clone=False) - cache.output_prev_subsampled).flatten().abs().mean()
|
||||
# if verbose in future
|
||||
output_change_rate = output_change / cache.output_prev_norm
|
||||
cache.output_change_rates.append(output_change_rate.item())
|
||||
if cache.has_relative_transformation_rate():
|
||||
approx_output_change_rate = (cache.relative_transformation_rate * input_change) / cache.output_prev_norm
|
||||
cache.approx_output_change_rates.append(approx_output_change_rate.item())
|
||||
if input_change is not None:
|
||||
cache.relative_transformation_rate = output_change / input_change
|
||||
# TODO: allow cache_diff to be offloaded
|
||||
cache.update_cache_diff(output_raw, next_x_prev)
|
||||
cache.x_prev_subsampled = cache.subsample(next_x_prev)
|
||||
cache.output_prev_subsampled = cache.subsample(output)
|
||||
cache.output_prev_norm = output.flatten().abs().mean()
|
||||
return output_raw
|
||||
return block_forward_wrapper
|
||||
output_raw = output_raw[0]
|
||||
if isinstance(orig_inputs, tuple):
|
||||
orig_inputs = orig_inputs[0]
|
||||
del self.previous_residual_subsampled
|
||||
self.previous_residual_subsampled = subsample(output_raw - orig_inputs, self.subsample_factor, clone=True)
|
||||
|
||||
def cache_current_residual(self, sb_holder: SortblockHolder):
|
||||
del self.current_residual_subsampled
|
||||
self.current_residual_subsampled = subsample(self.use_taylor_formula(sb_holder)[0], self.subsample_factor, clone=True)
|
||||
|
||||
def get_orig_inputs(self, d_args: tuple, d_kwargs: dict, clone: bool=True) -> tuple[torch.Tensor, ...]:
|
||||
if self.stream_count == 1:
|
||||
if clone:
|
||||
return d_args[0].clone()
|
||||
return d_args[0]
|
||||
keys = list(d_kwargs.keys())[:self.stream_count]
|
||||
orig_inputs = []
|
||||
for key in keys:
|
||||
if clone:
|
||||
orig_inputs.append(d_kwargs[key].clone())
|
||||
else:
|
||||
orig_inputs.append(d_kwargs[key])
|
||||
return tuple(orig_inputs)
|
||||
|
||||
def apply_linear_prediction(self, sb_holder: SortblockHolder, orig_inputs: Union[torch.Tensor, tuple[torch.Tensor, ...]]) -> None:
|
||||
drop_tuple = False
|
||||
if not isinstance(orig_inputs, tuple):
|
||||
orig_inputs = (orig_inputs,)
|
||||
drop_tuple = True
|
||||
taylor_results = self.use_taylor_formula(sb_holder)
|
||||
for output, taylor_result in zip(orig_inputs, taylor_results):
|
||||
if output.shape != taylor_result.shape:
|
||||
zzz = 10
|
||||
output += taylor_result
|
||||
if drop_tuple:
|
||||
orig_inputs = orig_inputs[0]
|
||||
return orig_inputs
|
||||
|
||||
def calculate_cosine_similarity(self) -> None:
|
||||
self.cosine_similarity = torch.nn.functional.cosine_similarity(self.previous_residual_subsampled, self.current_residual_subsampled, dim=-1).mean().item()
|
||||
|
||||
def derivative_approximation(self, sb_holder: SortblockHolder, output_raw: Union[torch.Tensor, tuple[torch.Tensor, ...]], orig_inputs: Union[torch.Tensor, tuple[torch.Tensor, ...]]):
|
||||
activation_distance = sb_holder.activated_steps[-1] - sb_holder.activated_steps[-2]
|
||||
# make tuple if not already tuple, so that works with both single and double blocks
|
||||
if not isinstance(output_raw, tuple):
|
||||
output_raw = (output_raw,)
|
||||
if not isinstance(orig_inputs, tuple):
|
||||
orig_inputs = (orig_inputs,)
|
||||
|
||||
for i, (output, x) in enumerate(zip(output_raw, orig_inputs)):
|
||||
feature = output.clone() - x
|
||||
has_previous_taylor_factor = self.previous_taylor_factors.get(i, None) is not None
|
||||
# NOTE: not sure why - 2, but that's what's in the original implementation. Maybe consider changing values?
|
||||
if has_previous_taylor_factor and sb_holder.step_count > (sb_holder.first_enhance - 2):
|
||||
self.current_taylor_factors[i] = (
|
||||
feature - self.previous_taylor_factors[i]
|
||||
) / activation_distance
|
||||
|
||||
self.previous_taylor_factors[i] = feature
|
||||
|
||||
def use_taylor_formula(self, sb_holder: SortblockHolder) -> tuple[torch.Tensor, ...]:
|
||||
step_distance = sb_holder.step_count - sb_holder.activated_steps[-1]
|
||||
|
||||
output_predicted = []
|
||||
|
||||
for key in self.previous_taylor_factors.keys():
|
||||
previous_tf = self.previous_taylor_factors[key]
|
||||
current_tf = self.current_taylor_factors[key]
|
||||
predicted = taylor_formula(previous_tf, 0, step_distance)
|
||||
predicted += taylor_formula(current_tf, 1, step_distance)
|
||||
output_predicted.append(predicted)
|
||||
|
||||
return tuple(output_predicted)
|
||||
|
||||
def reset(self):
|
||||
self.recompute = False
|
||||
self.current_residual_subsampled = None
|
||||
self.previous_residual_subsampled = None
|
||||
self.cosine_similarity = None
|
||||
self.previous_taylor_factors = {}
|
||||
self.current_taylor_factors = {}
|
||||
|
||||
def taylor_formula(taylor_factor: torch.Tensor, i: int, step_distance: int):
|
||||
return (
|
||||
(1 / math.factorial(i))
|
||||
* taylor_factor
|
||||
* (step_distance ** i)
|
||||
)
|
||||
|
||||
class SortblockHolder:
|
||||
def __init__(self, reuse_threshold: float, start_percent: float, end_percent: float, subsample_factor: int=8, verbose: bool=False):
|
||||
self.reuse_threshold = reuse_threshold
|
||||
def __init__(self, predict_ratio: float, policy_refresh_interval: int, start_percent: float, end_percent: float, subsample_factor: int=8, verbose: bool=False):
|
||||
self.predict_ratio = predict_ratio
|
||||
self.start_percent = start_percent
|
||||
self.end_percent = end_percent
|
||||
self.subsample_factor = subsample_factor
|
||||
self.verbose = verbose
|
||||
|
||||
# NOTE: number represents steps
|
||||
self.policy_refresh_interval = policy_refresh_interval
|
||||
self.active_policy_refresh_interval = 1
|
||||
self.first_enhance = 3 # NOTE: this value is 2 higher than the one actually used in code (subtracted by 2 in derivative_approximation)
|
||||
# timestep values
|
||||
self.start_t = 0.0
|
||||
self.end_t = 0.0
|
||||
self.curr_t = 0.0
|
||||
# control values
|
||||
self.past_timestep = False
|
||||
self.do_sortblock = False
|
||||
self.initial_step = True
|
||||
self.step_count = 0
|
||||
self.activated_steps: list[int] = [0]
|
||||
self.step_modulus = 0
|
||||
# cache values
|
||||
self.blocks = []
|
||||
self.all_blocks = []
|
||||
self.blocks_per_type = {}
|
||||
|
||||
def add_block(self, block):
|
||||
self.blocks.append(block)
|
||||
def add_to_all_blocks(self, block):
|
||||
self.all_blocks.append(block)
|
||||
|
||||
def add_to_blocks_per_type(self, block, block_type: str):
|
||||
self.blocks_per_type.setdefault(block_type, []).append(block)
|
||||
|
||||
def prepare_timesteps(self, model_sampling):
|
||||
self.start_t = model_sampling.percent_to_sigma(self.start_percent)
|
||||
self.end_t = model_sampling.percent_to_sigma(self.end_percent)
|
||||
return self
|
||||
|
||||
def update_is_past_end_timestep(self, timestep: float) -> bool:
|
||||
self.past_timestep = not (timestep[0] > self.end_t).item()
|
||||
return self.past_timestep
|
||||
|
||||
def is_past_end_timestep(self) -> bool:
|
||||
return self.past_timestep
|
||||
|
||||
def update_should_do_sortblock(self, timestep: float) -> bool:
|
||||
self.do_sortblock = (timestep[0] <= self.start_t).item()
|
||||
self.do_sortblock = (timestep[0] <= self.start_t).item() and (timestep[0] > self.end_t).item()
|
||||
self.curr_t = timestep
|
||||
if self.do_sortblock:
|
||||
self.active_policy_refresh_interval = self.policy_refresh_interval
|
||||
else:
|
||||
self.active_policy_refresh_interval = 1
|
||||
self.update_step_modulus()
|
||||
return self.do_sortblock
|
||||
|
||||
def update_step_modulus(self):
|
||||
self.step_modulus = int(self.step_count % self.active_policy_refresh_interval)
|
||||
|
||||
def should_do_sortblock(self) -> bool:
|
||||
return self.do_sortblock
|
||||
|
||||
def print_block_info(self, index: int):
|
||||
block = self.blocks[index]
|
||||
cache = getattr(block, "__block_cache")
|
||||
logging.info(f"Sortblock: block {index} output_change_rates: {cache.output_change_rates}")
|
||||
logging.info(f"Sortblock: block {index} approx_output_change_rates: {cache.approx_output_change_rates}")
|
||||
|
||||
def reset(self):
|
||||
self.initial_step = True
|
||||
self.curr_t = 0.0
|
||||
logging.info(f"Sortblock: resetting {len(self.blocks)} blocks")
|
||||
for block in self.blocks:
|
||||
logging.info(f"Sortblock: resetting {len(self.all_blocks)} blocks")
|
||||
for block in self.all_blocks:
|
||||
clean_block(block)
|
||||
self.blocks = []
|
||||
self.all_blocks = []
|
||||
self.blocks_per_type = {}
|
||||
self.step_count = 0
|
||||
self.activated_steps = [0]
|
||||
self.step_modulus = 0
|
||||
return self
|
||||
|
||||
def clone(self):
|
||||
return SortblockHolder(self.reuse_threshold, self.start_percent, self.end_percent, self.subsample_factor, self.verbose)
|
||||
return SortblockHolder(predict_ratio=self.predict_ratio, policy_refresh_interval=self.policy_refresh_interval,
|
||||
start_percent=self.start_percent, end_percent=self.end_percent, subsample_factor=self.subsample_factor,
|
||||
verbose=self.verbose)
|
||||
|
||||
|
||||
class BlockCache:
|
||||
def __init__(self, subsample_factor: int=8, stream_count: int=1, verbose: bool=False):
|
||||
self.subsample_factor = subsample_factor
|
||||
self.stream_count = stream_count
|
||||
self.verbose = verbose
|
||||
# control values
|
||||
self.relative_transformation_rate: float = None
|
||||
self.cumulative_change_rate = 0.0
|
||||
self.initial_step = True
|
||||
# cache values
|
||||
self.x_prev_subsampled: torch.Tensor = None
|
||||
self.output_prev_subsampled: torch.Tensor = None
|
||||
self.output_prev_norm: torch.Tensor = None
|
||||
self.cache_diff: list[torch.Tensor] = [None for _ in range(stream_count)]
|
||||
self.output_change_rates = []
|
||||
self.approx_output_change_rates = []
|
||||
self.total_steps_skipped = 0
|
||||
self.state_metadata = None
|
||||
self.want_to_skip = False
|
||||
self.allowed_to_skip = False
|
||||
|
||||
def has_cache_diff(self) -> bool:
|
||||
return self.cache_diff[0] is not None
|
||||
|
||||
def has_x_prev_subsampled(self) -> bool:
|
||||
return self.x_prev_subsampled is not None
|
||||
|
||||
def has_output_prev_subsampled(self) -> bool:
|
||||
return self.output_prev_subsampled is not None
|
||||
|
||||
def has_output_prev_norm(self) -> bool:
|
||||
return self.output_prev_norm is not None
|
||||
|
||||
def has_relative_transformation_rate(self) -> bool:
|
||||
return self.relative_transformation_rate is not None
|
||||
|
||||
def get_next_x_prev(self, d_kwargs: dict[str, torch.Tensor], clone: bool=False) -> Union[torch.Tensor, tuple[torch.Tensor, ...]]:
|
||||
keys = list(d_kwargs.keys())
|
||||
if self.stream_count == 1:
|
||||
if clone:
|
||||
return d_kwargs[keys[0]].clone()
|
||||
return d_kwargs[keys[0]]
|
||||
return tuple([d_kwargs[keys[i]].clone() if clone else d_kwargs[keys[i]] for i in range(self.stream_count)])
|
||||
|
||||
def subsample(self, x: Union[torch.Tensor, tuple[torch.Tensor, ...]], clone: bool = True) -> torch.Tensor:
|
||||
# subsample only the first compoenent
|
||||
if isinstance(x, tuple):
|
||||
return self.subsample(x[0], clone)
|
||||
if self.subsample_factor > 1:
|
||||
to_return = x[..., ::self.subsample_factor, ::self.subsample_factor]
|
||||
if clone:
|
||||
return to_return.clone()
|
||||
return to_return
|
||||
if clone:
|
||||
return x.clone()
|
||||
return x
|
||||
|
||||
def apply_cache_diff(self, x: Union[torch.Tensor, tuple[torch.Tensor, ...]]):
|
||||
self.total_steps_skipped += 1
|
||||
if not isinstance(x, tuple):
|
||||
x = (x, )
|
||||
to_return = tuple([x[i] + self.cache_diff[i] for i in range(self.stream_count)])
|
||||
if len(to_return) == 1:
|
||||
return to_return[0]
|
||||
return to_return
|
||||
|
||||
def update_cache_diff(self, output_raw: Union[torch.Tensor, tuple[torch.Tensor, ...]], x: Union[torch.Tensor, tuple[torch.Tensor, ...]]):
|
||||
if not isinstance(output_raw, tuple):
|
||||
output_raw = (output_raw, )
|
||||
if not isinstance(x, tuple):
|
||||
x = (x, )
|
||||
self.cache_diff = tuple([output_raw[i] - x[i] for i in range(self.stream_count)])
|
||||
|
||||
def check_metadata(self, x: torch.Tensor) -> bool:
|
||||
# TODO: make sure shapes are correct
|
||||
metadata = (x.device, x.dtype, x.shape)
|
||||
if self.state_metadata is None:
|
||||
self.state_metadata = metadata
|
||||
return True
|
||||
if metadata == self.state_metadata:
|
||||
return True
|
||||
logging.warn(f"{self.name} - Tensor shape, dtype or device changed, resetting state")
|
||||
self.reset()
|
||||
return False
|
||||
|
||||
def reset(self):
|
||||
self.relative_transformation_rate = 0.0
|
||||
self.cumulative_change_rate = 0.0
|
||||
self.initial_step = True
|
||||
self.cache_diff = [None for _ in range(self.stream_count)]
|
||||
self.output_change_rates = []
|
||||
self.approx_output_change_rates = []
|
||||
self.total_steps_skipped = 0
|
||||
self.state_metadata = None
|
||||
self.want_to_skip = False
|
||||
self.allowed_to_skip = False
|
||||
|
||||
class SortblockNode(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls) -> io.Schema:
|
||||
@@ -324,7 +361,8 @@ class SortblockNode(io.ComfyNode):
|
||||
is_experimental=True,
|
||||
inputs=[
|
||||
io.Model.Input("model", tooltip="The model to add Sortblock to."),
|
||||
io.Float.Input("reuse_threshold", min=0.0, default=0.2, max=3.0, step=0.01, tooltip="The threshold for reusing cached blocks."),
|
||||
io.Float.Input("predict_ratio", min=0.0, default=0.8, max=3.0, step=0.01, tooltip="The ratio of blocks to predict."),
|
||||
io.Int.Input("policy_refresh_interval", min=3, default=5, max=100, step=1, tooltip="The interval at which to refresh the policy."),
|
||||
io.Float.Input("start_percent", min=0.0, default=0.15, max=1.0, step=0.01, tooltip="The relative sampling step to begin use of Sortblock."),
|
||||
io.Float.Input("end_percent", min=0.0, default=0.95, max=1.0, step=0.01, tooltip="The relative sampling step to end use of Sortblock."),
|
||||
io.Boolean.Input("verbose", default=False, tooltip="Whether to log verbose information."),
|
||||
@@ -335,14 +373,13 @@ class SortblockNode(io.ComfyNode):
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, model: io.Model.Type, reuse_threshold: float, start_percent: float, end_percent: float, verbose: bool) -> io.NodeOutput:
|
||||
def execute(cls, model: io.Model.Type, predict_ratio: float, policy_refresh_interval: int, start_percent: float, end_percent: float, verbose: bool) -> io.NodeOutput:
|
||||
# TODO: check for specific flavors of supported models
|
||||
model = model.clone()
|
||||
model.model_options["transformer_options"]["sortblock"] = SortblockHolder(reuse_threshold, start_percent, end_percent, subsample_factor=8, verbose=verbose)
|
||||
model.model_options["transformer_options"]["sortblock"] = SortblockHolder(predict_ratio, policy_refresh_interval, start_percent, end_percent, subsample_factor=8, verbose=verbose)
|
||||
model.add_wrapper_with_key(comfy.patcher_extension.WrappersMP.PREDICT_NOISE, "sortblock", prepare_noise_wrapper)
|
||||
model.add_wrapper_with_key(comfy.patcher_extension.WrappersMP.OUTER_SAMPLE, "sortblock", outer_sample_wrapper)
|
||||
model.add_wrapper_with_key(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, "sortblock", model_forward_wrapper)
|
||||
# model.add_wrapper_with_key(comfy.patcher_extension.WrappersMP.OUTER_SAMPLE, "lazycache", easycache_sample_wrapper)
|
||||
# model.add_wrapper_with_key(comfy.patcher_extension.WrappersMP.PREDICT_NOISE, "lazycache", lazycache_predict_noise_wrapper)
|
||||
return io.NodeOutput(model)
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user