Merge branch 'v3-definition' into v3-definition-wip

This commit is contained in:
kosinkadink1@gmail.com 2025-07-16 02:23:41 -05:00
commit 751c57c853

View File

@ -7,212 +7,353 @@ import torch
from PIL import Image, ImageOps, ImageSequence
from PIL.PngImagePlugin import PngInfo
import comfy.utils
import folder_paths
import node_helpers
import nodes
from comfy.cli_args import args
from comfy_api.v3 import io, ui
from server import PromptServer
class SaveImage_V3(io.ComfyNodeV3):
class GetImageSize(io.ComfyNodeV3):
@classmethod
def DEFINE_SCHEMA(cls):
return io.SchemaV3(
node_id="SaveImage_V3",
display_name="Save Image _V3",
description="Saves the input images to your ComfyUI output directory.",
node_id="GetImageSize_V3",
display_name="Get Image Size _V3",
description="Returns width and height of the image, and passes it through unchanged.",
category="image",
inputs=[
io.Image.Input(
"images",
tooltip="The images to save.",
),
io.String.Input(
"filename_prefix",
default="ComfyUI",
tooltip="The prefix for the file to save. This may include formatting information "
"such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes.",
),
io.Image.Input("image"),
],
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
is_output_node=True,
)
@classmethod
def execute(cls, images, filename_prefix="ComfyUI") -> io.NodeOutput:
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(
filename_prefix, folder_paths.get_output_directory(), images[0].shape[1], images[0].shape[0]
)
results = []
for batch_number, image in enumerate(images):
i = 255.0 * image.cpu().numpy()
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
metadata = None
if not args.disable_metadata:
metadata = PngInfo()
if cls.hidden.prompt is not None:
metadata.add_text("prompt", json.dumps(cls.hidden.prompt))
if cls.hidden.extra_pnginfo is not None:
for x in cls.hidden.extra_pnginfo:
metadata.add_text(x, json.dumps(cls.hidden.extra_pnginfo[x]))
filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
file = f"{filename_with_batch_num}_{counter:05}_.png"
img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
results.append(ui.SavedResult(file, subfolder, io.FolderType.output))
counter += 1
return io.NodeOutput(ui={"images": results})
class SaveAnimatedPNG_V3(io.ComfyNodeV3):
@classmethod
def DEFINE_SCHEMA(cls):
return io.SchemaV3(
node_id="SaveAnimatedPNG_V3",
display_name="Save Animated PNG _V3",
category="image/animation",
inputs=[
io.Image.Input("images"),
io.String.Input("filename_prefix", default="ComfyUI"),
io.Float.Input("fps", default=6.0, min=0.01, max=1000.0, step=0.01),
io.Int.Input("compress_level", default=4, min=0, max=9),
outputs=[
io.Int.Output(display_name="width"),
io.Int.Output(display_name="height"),
io.Int.Output(display_name="batch_size"),
],
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
is_output_node=True,
hidden=[io.Hidden.unique_id],
)
@classmethod
def execute(cls, images, fps, compress_level, filename_prefix="ComfyUI") -> io.NodeOutput:
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(
filename_prefix, folder_paths.get_output_directory(), images[0].shape[1], images[0].shape[0]
)
results = []
pil_images = []
for image in images:
img = Image.fromarray(np.clip(255.0 * image.cpu().numpy(), 0, 255).astype(np.uint8))
pil_images.append(img)
def execute(cls, image) -> io.NodeOutput:
height = image.shape[1]
width = image.shape[2]
batch_size = image.shape[0]
metadata = None
if not args.disable_metadata:
metadata = PngInfo()
if cls.hidden.prompt is not None:
metadata.add(
b"comf",
"prompt".encode("latin-1", "strict")
+ b"\0"
+ json.dumps(cls.hidden.prompt).encode("latin-1", "strict"),
after_idat=True,
)
if cls.hidden.extra_pnginfo is not None:
for x in cls.hidden.extra_pnginfo:
metadata.add(
b"comf",
x.encode("latin-1", "strict")
+ b"\0"
+ json.dumps(cls.hidden.extra_pnginfo[x]).encode("latin-1", "strict"),
after_idat=True,
)
file = f"{filename}_{counter:05}_.png"
pil_images[0].save(
os.path.join(full_output_folder, file),
pnginfo=metadata,
compress_level=compress_level,
save_all=True,
duration=int(1000.0 / fps),
append_images=pil_images[1:],
)
results.append(ui.SavedResult(file, subfolder, io.FolderType.output))
return io.NodeOutput(ui={"images": results, "animated": (True,)})
class SaveAnimatedWEBP_V3(io.ComfyNodeV3):
COMPRESS_METHODS = {"default": 4, "fastest": 0, "slowest": 6}
@classmethod
def DEFINE_SCHEMA(cls):
return io.SchemaV3(
node_id="SaveAnimatedWEBP_V3",
display_name="Save Animated WEBP _V3",
category="image/animation",
inputs=[
io.Image.Input("images"),
io.String.Input("filename_prefix", default="ComfyUI"),
io.Float.Input("fps", default=6.0, min=0.01, max=1000.0, step=0.01),
io.Boolean.Input("lossless", default=True),
io.Int.Input("quality", default=80, min=0, max=100),
io.Combo.Input("method", options=list(cls.COMPRESS_METHODS.keys())),
# "num_frames": ("INT", {"default": 0, "min": 0, "max": 8192}),
],
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
is_output_node=True,
)
@classmethod
def execute(cls, images, fps, filename_prefix, lossless, quality, method, num_frames=0) -> io.NodeOutput:
method = cls.COMPRESS_METHODS.get(method)
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(
filename_prefix, folder_paths.get_output_directory(), images[0].shape[1], images[0].shape[0]
)
results = []
pil_images = []
for image in images:
img = Image.fromarray(np.clip(255.0 * image.cpu().numpy(), 0, 255).astype(np.uint8))
pil_images.append(img)
metadata = pil_images[0].getexif()
if not args.disable_metadata:
if cls.hidden.prompt is not None:
metadata[0x0110] = "prompt:{}".format(json.dumps(cls.hidden.prompt))
if cls.hidden.extra_pnginfo is not None:
inital_exif = 0x010F
for x in cls.hidden.extra_pnginfo:
metadata[inital_exif] = "{}:{}".format(x, json.dumps(cls.hidden.extra_pnginfo[x]))
inital_exif -= 1
if num_frames == 0:
num_frames = len(pil_images)
for i in range(0, len(pil_images), num_frames):
file = f"{filename}_{counter:05}_.webp"
pil_images[i].save(
os.path.join(full_output_folder, file),
save_all=True,
duration=int(1000.0 / fps),
append_images=pil_images[i + 1 : i + num_frames],
exif=metadata,
lossless=lossless,
quality=quality,
method=method,
if cls.hidden.unique_id:
PromptServer.instance.send_progress_text(
f"width: {width}, height: {height}\n batch size: {batch_size}", cls.hidden.unique_id
)
results.append(ui.SavedResult(file, subfolder, io.FolderType.output))
counter += 1
return io.NodeOutput(ui={"images": results, "animated": (num_frames != 1,)})
return io.NodeOutput(width, height, batch_size)
class PreviewImage_V3(io.ComfyNodeV3):
class ImageAddNoise(io.ComfyNodeV3):
@classmethod
def DEFINE_SCHEMA(cls):
return io.SchemaV3(
node_id="PreviewImage_V3",
display_name="Preview Image _V3",
description="Preview the input images.",
node_id="ImageAddNoise_V3",
display_name="Image Add Noise _V3",
category="image",
inputs=[
io.Image.Input("images", tooltip="The images to preview."),
io.Image.Input("image"),
io.Int.Input(
"seed",
default=0,
min=0,
max=0xFFFFFFFFFFFFFFFF,
control_after_generate=True,
tooltip="The random seed used for creating the noise.",
),
io.Float.Input("strength", default=0.5, min=0.0, max=1.0, step=0.01),
],
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
is_output_node=True,
outputs=[io.Image.Output()],
)
@classmethod
def execute(cls, images) -> io.NodeOutput:
return io.NodeOutput(ui=ui.PreviewImage(images, cls=cls))
def execute(cls, image, seed, strength) -> io.NodeOutput:
generator = torch.manual_seed(seed)
s = torch.clip(
(image + strength * torch.randn(image.size(), generator=generator, device="cpu").to(image)),
min=0.0,
max=1.0,
)
return io.NodeOutput(s)
class LoadImage_V3(io.ComfyNodeV3):
class ImageCrop(io.ComfyNodeV3):
@classmethod
def DEFINE_SCHEMA(cls):
return io.SchemaV3(
node_id="ImageCrop_V3",
display_name="Image Crop _V3",
category="image/transform",
inputs=[
io.Image.Input("image"),
io.Int.Input("width", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1),
io.Int.Input("height", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1),
io.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1),
io.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1),
],
outputs=[io.Image.Output()],
)
@classmethod
def execute(cls, image, width, height, x, y) -> io.NodeOutput:
x = min(x, image.shape[2] - 1)
y = min(y, image.shape[1] - 1)
to_x = width + x
to_y = height + y
return io.NodeOutput(image[:, y:to_y, x:to_x, :])
class ImageFlip(io.ComfyNodeV3):
@classmethod
def DEFINE_SCHEMA(cls):
return io.SchemaV3(
node_id="ImageFlip_V3",
display_name="Image Flip _V3",
category="image/transform",
inputs=[
io.Image.Input("image"),
io.Combo.Input("flip_method", options=["x-axis: vertically", "y-axis: horizontally"]),
],
outputs=[io.Image.Output()],
)
@classmethod
def execute(cls, image, flip_method) -> io.NodeOutput:
if flip_method.startswith("x"):
image = torch.flip(image, dims=[1])
elif flip_method.startswith("y"):
image = torch.flip(image, dims=[2])
return io.NodeOutput(image)
class ImageFromBatch(io.ComfyNodeV3):
@classmethod
def DEFINE_SCHEMA(cls):
return io.SchemaV3(
node_id="ImageFromBatch_V3",
display_name="Image From Batch _V3",
category="image/batch",
inputs=[
io.Image.Input("image"),
io.Int.Input("batch_index", default=0, min=0, max=4095),
io.Int.Input("length", default=1, min=1, max=4096),
],
outputs=[io.Image.Output()],
)
@classmethod
def execute(cls, image, batch_index, length) -> io.NodeOutput:
s_in = image
batch_index = min(s_in.shape[0] - 1, batch_index)
length = min(s_in.shape[0] - batch_index, length)
s = s_in[batch_index : batch_index + length].clone()
return io.NodeOutput(s)
class ImageRotate(io.ComfyNodeV3):
@classmethod
def DEFINE_SCHEMA(cls):
return io.SchemaV3(
node_id="ImageRotate_V3",
display_name="Image Rotate _V3",
category="image/transform",
inputs=[
io.Image.Input("image"),
io.Combo.Input("rotation", options=["none", "90 degrees", "180 degrees", "270 degrees"]),
],
outputs=[io.Image.Output()],
)
@classmethod
def execute(cls, image, rotation) -> io.NodeOutput:
rotate_by = 0
if rotation.startswith("90"):
rotate_by = 1
elif rotation.startswith("180"):
rotate_by = 2
elif rotation.startswith("270"):
rotate_by = 3
return io.NodeOutput(torch.rot90(image, k=rotate_by, dims=[2, 1]))
class ImageStitch(io.ComfyNodeV3):
"""Upstreamed from https://github.com/kijai/ComfyUI-KJNodes"""
@classmethod
def DEFINE_SCHEMA(cls):
return io.SchemaV3(
node_id="ImageStitch_V3",
display_name="Image Stitch _V3",
description="Stitches image2 to image1 in the specified direction. "
"If image2 is not provided, returns image1 unchanged. "
"Optional spacing can be added between images.",
category="image/transform",
inputs=[
io.Image.Input("image1"),
io.Combo.Input("direction", options=["right", "down", "left", "up"], default="right"),
io.Boolean.Input("match_image_size", default=True),
io.Int.Input("spacing_width", default=0, min=0, max=1024, step=2),
io.Combo.Input("spacing_color", options=["white", "black", "red", "green", "blue"], default="white"),
io.Image.Input("image2", optional=True),
],
outputs=[io.Image.Output()],
)
@classmethod
def execute(cls, image1, direction, match_image_size, spacing_width, spacing_color, image2=None) -> io.NodeOutput:
if image2 is None:
return io.NodeOutput(image1)
# Handle batch size differences
if image1.shape[0] != image2.shape[0]:
max_batch = max(image1.shape[0], image2.shape[0])
if image1.shape[0] < max_batch:
image1 = torch.cat([image1, image1[-1:].repeat(max_batch - image1.shape[0], 1, 1, 1)])
if image2.shape[0] < max_batch:
image2 = torch.cat([image2, image2[-1:].repeat(max_batch - image2.shape[0], 1, 1, 1)])
# Match image sizes if requested
if match_image_size:
h1, w1 = image1.shape[1:3]
h2, w2 = image2.shape[1:3]
aspect_ratio = w2 / h2
if direction in ["left", "right"]:
target_h, target_w = h1, int(h1 * aspect_ratio)
else: # up, down
target_w, target_h = w1, int(w1 / aspect_ratio)
image2 = comfy.utils.common_upscale(
image2.movedim(-1, 1), target_w, target_h, "lanczos", "disabled"
).movedim(1, -1)
color_map = {
"white": 1.0,
"black": 0.0,
"red": (1.0, 0.0, 0.0),
"green": (0.0, 1.0, 0.0),
"blue": (0.0, 0.0, 1.0),
}
color_val = color_map[spacing_color]
# When not matching sizes, pad to align non-concat dimensions
if not match_image_size:
h1, w1 = image1.shape[1:3]
h2, w2 = image2.shape[1:3]
pad_value = 0.0
if not isinstance(color_val, tuple):
pad_value = color_val
if direction in ["left", "right"]:
# For horizontal concat, pad heights to match
if h1 != h2:
target_h = max(h1, h2)
if h1 < target_h:
pad_h = target_h - h1
pad_top, pad_bottom = pad_h // 2, pad_h - pad_h // 2
image1 = torch.nn.functional.pad(
image1, (0, 0, 0, 0, pad_top, pad_bottom), mode="constant", value=pad_value
)
if h2 < target_h:
pad_h = target_h - h2
pad_top, pad_bottom = pad_h // 2, pad_h - pad_h // 2
image2 = torch.nn.functional.pad(
image2, (0, 0, 0, 0, pad_top, pad_bottom), mode="constant", value=pad_value
)
else: # up, down
# For vertical concat, pad widths to match
if w1 != w2:
target_w = max(w1, w2)
if w1 < target_w:
pad_w = target_w - w1
pad_left, pad_right = pad_w // 2, pad_w - pad_w // 2
image1 = torch.nn.functional.pad(
image1, (0, 0, pad_left, pad_right), mode="constant", value=pad_value
)
if w2 < target_w:
pad_w = target_w - w2
pad_left, pad_right = pad_w // 2, pad_w - pad_w // 2
image2 = torch.nn.functional.pad(
image2, (0, 0, pad_left, pad_right), mode="constant", value=pad_value
)
# Ensure same number of channels
if image1.shape[-1] != image2.shape[-1]:
max_channels = max(image1.shape[-1], image2.shape[-1])
if image1.shape[-1] < max_channels:
image1 = torch.cat(
[
image1,
torch.ones(
*image1.shape[:-1],
max_channels - image1.shape[-1],
device=image1.device,
),
],
dim=-1,
)
if image2.shape[-1] < max_channels:
image2 = torch.cat(
[
image2,
torch.ones(
*image2.shape[:-1],
max_channels - image2.shape[-1],
device=image2.device,
),
],
dim=-1,
)
# Add spacing if specified
if spacing_width > 0:
spacing_width = spacing_width + (spacing_width % 2) # Ensure even
if direction in ["left", "right"]:
spacing_shape = (
image1.shape[0],
max(image1.shape[1], image2.shape[1]),
spacing_width,
image1.shape[-1],
)
else:
spacing_shape = (
image1.shape[0],
spacing_width,
max(image1.shape[2], image2.shape[2]),
image1.shape[-1],
)
spacing = torch.full(spacing_shape, 0.0, device=image1.device)
if isinstance(color_val, tuple):
for i, c in enumerate(color_val):
if i < spacing.shape[-1]:
spacing[..., i] = c
if spacing.shape[-1] == 4: # Add alpha
spacing[..., 3] = 1.0
else:
spacing[..., : min(3, spacing.shape[-1])] = color_val
if spacing.shape[-1] == 4:
spacing[..., 3] = 1.0
# Concatenate images
images = [image2, image1] if direction in ["left", "up"] else [image1, image2]
if spacing_width > 0:
images.insert(1, spacing)
concat_dim = 2 if direction in ["left", "right"] else 1
return io.NodeOutput(torch.cat(images, dim=concat_dim))
class LoadImage(io.ComfyNodeV3):
@classmethod
def DEFINE_SCHEMA(cls):
return io.SchemaV3(
@ -300,7 +441,7 @@ class LoadImage_V3(io.ComfyNodeV3):
return True
class LoadImageOutput_V3(io.ComfyNodeV3):
class LoadImageOutput(io.ComfyNodeV3):
@classmethod
def DEFINE_SCHEMA(cls):
return io.SchemaV3(
@ -389,11 +530,283 @@ class LoadImageOutput_V3(io.ComfyNodeV3):
return True
class PreviewImage(io.ComfyNodeV3):
@classmethod
def DEFINE_SCHEMA(cls):
return io.SchemaV3(
node_id="PreviewImage_V3",
display_name="Preview Image _V3",
description="Preview the input images.",
category="image",
inputs=[
io.Image.Input("images", tooltip="The images to preview."),
],
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
is_output_node=True,
)
@classmethod
def execute(cls, images) -> io.NodeOutput:
return io.NodeOutput(ui=ui.PreviewImage(images, cls=cls))
class RepeatImageBatch(io.ComfyNodeV3):
@classmethod
def DEFINE_SCHEMA(cls):
return io.SchemaV3(
node_id="RepeatImageBatch_V3",
display_name="Repeat Image Batch _V3",
category="image/batch",
inputs=[
io.Image.Input("image"),
io.Int.Input("amount", default=1, min=1, max=4096),
],
outputs=[io.Image.Output()],
)
@classmethod
def execute(cls, image, amount) -> io.NodeOutput:
return io.NodeOutput(image.repeat((amount, 1, 1, 1)))
class ResizeAndPadImage(io.ComfyNodeV3):
@classmethod
def DEFINE_SCHEMA(cls):
return io.SchemaV3(
node_id="ResizeAndPadImage_V3",
display_name="Resize and Pad Image _V3",
category="image/transform",
inputs=[
io.Image.Input("image"),
io.Int.Input("target_width", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1),
io.Int.Input("target_height", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1),
io.Combo.Input("padding_color", options=["white", "black"]),
io.Combo.Input("interpolation", options=["area", "bicubic", "nearest-exact", "bilinear", "lanczos"]),
],
outputs=[io.Image.Output()],
)
@classmethod
def execute(cls, image, target_width, target_height, padding_color, interpolation) -> io.NodeOutput:
batch_size, orig_height, orig_width, channels = image.shape
scale_w = target_width / orig_width
scale_h = target_height / orig_height
scale = min(scale_w, scale_h)
new_width = int(orig_width * scale)
new_height = int(orig_height * scale)
image_permuted = image.permute(0, 3, 1, 2)
resized = comfy.utils.common_upscale(image_permuted, new_width, new_height, interpolation, "disabled")
pad_value = 0.0 if padding_color == "black" else 1.0
padded = torch.full(
(batch_size, channels, target_height, target_width), pad_value, dtype=image.dtype, device=image.device
)
y_offset = (target_height - new_height) // 2
x_offset = (target_width - new_width) // 2
padded[:, :, y_offset : y_offset + new_height, x_offset : x_offset + new_width] = resized
return io.NodeOutput(padded.permute(0, 2, 3, 1))
class SaveAnimatedPNG(io.ComfyNodeV3):
@classmethod
def DEFINE_SCHEMA(cls):
return io.SchemaV3(
node_id="SaveAnimatedPNG_V3",
display_name="Save Animated PNG _V3",
category="image/animation",
inputs=[
io.Image.Input("images"),
io.String.Input("filename_prefix", default="ComfyUI"),
io.Float.Input("fps", default=6.0, min=0.01, max=1000.0, step=0.01),
io.Int.Input("compress_level", default=4, min=0, max=9),
],
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
is_output_node=True,
)
@classmethod
def execute(cls, images, fps, compress_level, filename_prefix="ComfyUI") -> io.NodeOutput:
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(
filename_prefix, folder_paths.get_output_directory(), images[0].shape[1], images[0].shape[0]
)
results = []
pil_images = []
for image in images:
img = Image.fromarray(np.clip(255.0 * image.cpu().numpy(), 0, 255).astype(np.uint8))
pil_images.append(img)
metadata = None
if not args.disable_metadata:
metadata = PngInfo()
if cls.hidden.prompt is not None:
metadata.add(
b"comf",
"prompt".encode("latin-1", "strict")
+ b"\0"
+ json.dumps(cls.hidden.prompt).encode("latin-1", "strict"),
after_idat=True,
)
if cls.hidden.extra_pnginfo is not None:
for x in cls.hidden.extra_pnginfo:
metadata.add(
b"comf",
x.encode("latin-1", "strict")
+ b"\0"
+ json.dumps(cls.hidden.extra_pnginfo[x]).encode("latin-1", "strict"),
after_idat=True,
)
file = f"{filename}_{counter:05}_.png"
pil_images[0].save(
os.path.join(full_output_folder, file),
pnginfo=metadata,
compress_level=compress_level,
save_all=True,
duration=int(1000.0 / fps),
append_images=pil_images[1:],
)
results.append(ui.SavedResult(file, subfolder, io.FolderType.output))
return io.NodeOutput(ui={"images": results, "animated": (True,)})
class SaveAnimatedWEBP(io.ComfyNodeV3):
COMPRESS_METHODS = {"default": 4, "fastest": 0, "slowest": 6}
@classmethod
def DEFINE_SCHEMA(cls):
return io.SchemaV3(
node_id="SaveAnimatedWEBP_V3",
display_name="Save Animated WEBP _V3",
category="image/animation",
inputs=[
io.Image.Input("images"),
io.String.Input("filename_prefix", default="ComfyUI"),
io.Float.Input("fps", default=6.0, min=0.01, max=1000.0, step=0.01),
io.Boolean.Input("lossless", default=True),
io.Int.Input("quality", default=80, min=0, max=100),
io.Combo.Input("method", options=list(cls.COMPRESS_METHODS.keys())),
# "num_frames": ("INT", {"default": 0, "min": 0, "max": 8192}),
],
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
is_output_node=True,
)
@classmethod
def execute(cls, images, fps, filename_prefix, lossless, quality, method, num_frames=0) -> io.NodeOutput:
method = cls.COMPRESS_METHODS.get(method)
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(
filename_prefix, folder_paths.get_output_directory(), images[0].shape[1], images[0].shape[0]
)
results = []
pil_images = []
for image in images:
img = Image.fromarray(np.clip(255.0 * image.cpu().numpy(), 0, 255).astype(np.uint8))
pil_images.append(img)
metadata = pil_images[0].getexif()
if not args.disable_metadata:
if cls.hidden.prompt is not None:
metadata[0x0110] = "prompt:{}".format(json.dumps(cls.hidden.prompt))
if cls.hidden.extra_pnginfo is not None:
inital_exif = 0x010F
for x in cls.hidden.extra_pnginfo:
metadata[inital_exif] = "{}:{}".format(x, json.dumps(cls.hidden.extra_pnginfo[x]))
inital_exif -= 1
if num_frames == 0:
num_frames = len(pil_images)
for i in range(0, len(pil_images), num_frames):
file = f"{filename}_{counter:05}_.webp"
pil_images[i].save(
os.path.join(full_output_folder, file),
save_all=True,
duration=int(1000.0 / fps),
append_images=pil_images[i + 1 : i + num_frames],
exif=metadata,
lossless=lossless,
quality=quality,
method=method,
)
results.append(ui.SavedResult(file, subfolder, io.FolderType.output))
counter += 1
return io.NodeOutput(ui={"images": results, "animated": (num_frames != 1,)})
class SaveImage(io.ComfyNodeV3):
@classmethod
def DEFINE_SCHEMA(cls):
return io.SchemaV3(
node_id="SaveImage_V3",
display_name="Save Image _V3",
description="Saves the input images to your ComfyUI output directory.",
category="image",
inputs=[
io.Image.Input(
"images",
tooltip="The images to save.",
),
io.String.Input(
"filename_prefix",
default="ComfyUI",
tooltip="The prefix for the file to save. This may include formatting information "
"such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes.",
),
],
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
is_output_node=True,
)
@classmethod
def execute(cls, images, filename_prefix="ComfyUI") -> io.NodeOutput:
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(
filename_prefix, folder_paths.get_output_directory(), images[0].shape[1], images[0].shape[0]
)
results = []
for batch_number, image in enumerate(images):
i = 255.0 * image.cpu().numpy()
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
metadata = None
if not args.disable_metadata:
metadata = PngInfo()
if cls.hidden.prompt is not None:
metadata.add_text("prompt", json.dumps(cls.hidden.prompt))
if cls.hidden.extra_pnginfo is not None:
for x in cls.hidden.extra_pnginfo:
metadata.add_text(x, json.dumps(cls.hidden.extra_pnginfo[x]))
filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
file = f"{filename_with_batch_num}_{counter:05}_.png"
img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
results.append(ui.SavedResult(file, subfolder, io.FolderType.output))
counter += 1
return io.NodeOutput(ui={"images": results})
NODES_LIST: list[type[io.ComfyNodeV3]] = [
SaveAnimatedPNG_V3,
SaveAnimatedWEBP_V3,
SaveImage_V3,
PreviewImage_V3,
LoadImage_V3,
LoadImageOutput_V3,
GetImageSize,
ImageAddNoise,
ImageCrop,
ImageFlip,
ImageFromBatch,
ImageRotate,
ImageStitch,
LoadImage,
LoadImageOutput,
PreviewImage,
RepeatImageBatch,
ResizeAndPadImage,
SaveAnimatedPNG,
SaveAnimatedWEBP,
SaveImage,
]