P2 of qwen edit model. (#9412)

* P2 of qwen edit model.

* Typo.

* Fix normal qwen.

* Fix.

* Make the TextEncodeQwenImageEdit also set the ref latent.

If you don't want it to set the ref latent and want to use the
ReferenceLatent node with your custom latent instead just disconnect the
VAE.
This commit is contained in:
comfyanonymous
2025-08-18 19:38:34 -07:00
committed by GitHub
parent bd2ab73976
commit 4977f203fa
10 changed files with 565 additions and 15 deletions

View File

@@ -97,7 +97,7 @@ class CLIPTextModel_(torch.nn.Module):
self.encoder = CLIPEncoder(num_layers, embed_dim, heads, intermediate_size, intermediate_activation, dtype, device, operations)
self.final_layer_norm = operations.LayerNorm(embed_dim, dtype=dtype, device=device)
def forward(self, input_tokens=None, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=torch.float32):
def forward(self, input_tokens=None, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=torch.float32, embeds_info=[]):
if embeds is not None:
x = embeds + comfy.ops.cast_to(self.embeddings.position_embedding.weight, dtype=dtype, device=embeds.device)
else:

View File

@@ -1325,6 +1325,7 @@ class Omnigen2(BaseModel):
class QwenImage(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLUX, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.qwen_image.model.QwenImageTransformer2DModel)
self.memory_usage_factor_conds = ("ref_latents",)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
@@ -1342,3 +1343,10 @@ class QwenImage(BaseModel):
if ref_latents_method is not None:
out['ref_latents_method'] = comfy.conds.CONDConstant(ref_latents_method)
return out
def extra_conds_shapes(self, **kwargs):
out = {}
ref_latents = kwargs.get("reference_latents", None)
if ref_latents is not None:
out['ref_latents'] = list([1, 16, sum(map(lambda a: math.prod(a.size()), ref_latents)) // 16])
return out

View File

@@ -204,17 +204,19 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
tokens_embed = self.transformer.get_input_embeddings()(tokens_embed, out_dtype=torch.float32)
index = 0
pad_extra = 0
embeds_info = []
for o in other_embeds:
emb = o[1]
if torch.is_tensor(emb):
emb = {"type": "embedding", "data": emb}
extra = None
emb_type = emb.get("type", None)
if emb_type == "embedding":
emb = emb.get("data", None)
else:
if hasattr(self.transformer, "preprocess_embed"):
emb = self.transformer.preprocess_embed(emb, device=device)
emb, extra = self.transformer.preprocess_embed(emb, device=device)
else:
emb = None
@@ -229,6 +231,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
tokens_embed = torch.cat([tokens_embed[:, :ind], emb, tokens_embed[:, ind:]], dim=1)
attention_mask = attention_mask[:ind] + [1] * emb_shape + attention_mask[ind:]
index += emb_shape - 1
embeds_info.append({"type": emb_type, "index": ind, "size": emb_shape, "extra": extra})
else:
index += -1
pad_extra += emb_shape
@@ -243,11 +246,11 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
attention_masks.append(attention_mask)
num_tokens.append(sum(attention_mask))
return torch.cat(embeds_out), torch.tensor(attention_masks, device=device, dtype=torch.long), num_tokens
return torch.cat(embeds_out), torch.tensor(attention_masks, device=device, dtype=torch.long), num_tokens, embeds_info
def forward(self, tokens):
device = self.transformer.get_input_embeddings().weight.device
embeds, attention_mask, num_tokens = self.process_tokens(tokens, device)
embeds, attention_mask, num_tokens, embeds_info = self.process_tokens(tokens, device)
attention_mask_model = None
if self.enable_attention_masks:
@@ -258,7 +261,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
else:
intermediate_output = self.layer_idx
outputs = self.transformer(None, attention_mask_model, embeds=embeds, num_tokens=num_tokens, intermediate_output=intermediate_output, final_layer_norm_intermediate=self.layer_norm_hidden_state, dtype=torch.float32)
outputs = self.transformer(None, attention_mask_model, embeds=embeds, num_tokens=num_tokens, intermediate_output=intermediate_output, final_layer_norm_intermediate=self.layer_norm_hidden_state, dtype=torch.float32, embeds_info=embeds_info)
if self.layer == "last":
z = outputs[0].float()

View File

@@ -116,7 +116,7 @@ class BertModel_(torch.nn.Module):
self.embeddings = BertEmbeddings(config_dict["vocab_size"], config_dict["max_position_embeddings"], config_dict["type_vocab_size"], config_dict["pad_token_id"], embed_dim, layer_norm_eps, dtype, device, operations)
self.encoder = BertEncoder(config_dict["num_hidden_layers"], embed_dim, config_dict["intermediate_size"], config_dict["num_attention_heads"], layer_norm_eps, dtype, device, operations)
def forward(self, input_tokens, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None):
def forward(self, input_tokens, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None, embeds_info=[]):
x = self.embeddings(input_tokens, embeds=embeds, dtype=dtype)
mask = None
if attention_mask is not None:

View File

@@ -2,12 +2,14 @@ import torch
import torch.nn as nn
from dataclasses import dataclass
from typing import Optional, Any
import math
from comfy.ldm.modules.attention import optimized_attention_for_device
import comfy.model_management
import comfy.ldm.common_dit
import comfy.model_management
from . import qwen_vl
@dataclass
class Llama2Config:
@@ -100,12 +102,10 @@ def rotate_half(x):
return torch.cat((-x2, x1), dim=-1)
def precompute_freqs_cis(head_dim, seq_len, theta, device=None):
def precompute_freqs_cis(head_dim, position_ids, theta, device=None):
theta_numerator = torch.arange(0, head_dim, 2, device=device).float()
inv_freq = 1.0 / (theta ** (theta_numerator / head_dim))
position_ids = torch.arange(0, seq_len, device=device).unsqueeze(0)
inv_freq_expanded = inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
@@ -277,7 +277,7 @@ class Llama2_(nn.Module):
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps, add=config.rms_norm_add, device=device, dtype=dtype)
# self.lm_head = ops.Linear(config.hidden_size, config.vocab_size, bias=False, device=device, dtype=dtype)
def forward(self, x, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None):
def forward(self, x, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None, position_ids=None, embeds_info=[]):
if embeds is not None:
x = embeds
else:
@@ -286,8 +286,11 @@ class Llama2_(nn.Module):
if self.normalize_in:
x *= self.config.hidden_size ** 0.5
if position_ids is None:
position_ids = torch.arange(0, x.shape[1], device=x.device).unsqueeze(0)
freqs_cis = precompute_freqs_cis(self.config.head_dim,
x.shape[1],
position_ids,
self.config.rope_theta,
device=x.device)
@@ -372,8 +375,38 @@ class Qwen25_7BVLI(BaseLlama, torch.nn.Module):
self.num_layers = config.num_hidden_layers
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.visual = qwen_vl.Qwen2VLVisionTransformer(hidden_size=1280, output_hidden_size=config.hidden_size, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
def preprocess_embed(self, embed, device):
if embed["type"] == "image":
image, grid = qwen_vl.process_qwen2vl_images(embed["data"])
return self.visual(image.to(device, dtype=torch.float32), grid), grid
return None, None
def forward(self, x, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None, embeds_info=[]):
grid = None
for e in embeds_info:
if e.get("type") == "image":
grid = e.get("extra", None)
position_ids = torch.zeros((3, embeds.shape[1]), device=embeds.device)
start = e.get("index")
position_ids[:, :start] = torch.arange(0, start, device=embeds.device)
end = e.get("size") + start
len_max = int(grid.max()) // 2
start_next = len_max + start
position_ids[:, end:] = torch.arange(start_next, start_next + (embeds.shape[1] - end), device=embeds.device)
position_ids[0, start:end] = start
max_d = int(grid[0][1]) // 2
position_ids[1, start:end] = torch.arange(start, start + max_d, device=embeds.device).unsqueeze(1).repeat(1, math.ceil((end - start) / max_d)).flatten(0)[:end - start]
max_d = int(grid[0][2]) // 2
position_ids[2, start:end] = torch.arange(start, start + max_d, device=embeds.device).unsqueeze(0).repeat(math.ceil((end - start) / max_d), 1).flatten(0)[:end - start]
if grid is None:
position_ids = None
return super().forward(x, attention_mask=attention_mask, embeds=embeds, num_tokens=num_tokens, intermediate_output=intermediate_output, final_layer_norm_intermediate=final_layer_norm_intermediate, dtype=dtype, position_ids=position_ids)
class Gemma2_2B(BaseLlama, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()

View File

@@ -15,13 +15,27 @@ class QwenImageTokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="qwen25_7b", tokenizer=Qwen25_7BVLITokenizer)
self.llama_template = "<|im_start|>system\nDescribe the image by detailing the color, shape, size, texture, quantity, text, spatial relationships of the objects and background:<|im_end|>\n<|im_start|>user\n{}<|im_end|>\n<|im_start|>assistant\n"
self.llama_template_images = "<|im_start|>system\nDescribe the key features of the input image \\(color, shape, size, texture, objects, background\\), then explain how the user's text instruction should alter or modify the image. Generate a new image that meets the user's requirements while maintaining consistency with the original input where appropriate.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>{}<|im_end|>\n<|im_start|>assistant\n"
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None,**kwargs):
def tokenize_with_weights(self, text, return_word_ids=False, llama_template=None, images=[], **kwargs):
if llama_template is None:
llama_text = self.llama_template.format(text)
if len(images) > 0:
llama_text = self.llama_template_images.format(text)
else:
llama_text = self.llama_template.format(text)
else:
llama_text = llama_template.format(text)
return super().tokenize_with_weights(llama_text, return_word_ids=return_word_ids, **kwargs)
tokens = super().tokenize_with_weights(llama_text, return_word_ids=return_word_ids, **kwargs)
key_name = next(iter(tokens))
embed_count = 0
qwen_tokens = tokens[key_name]
for r in qwen_tokens:
for i in range(len(r)):
if r[i][0] == 151655:
if len(images) > embed_count:
r[i] = ({"type": "image", "data": images[embed_count], "original_type": "image"},) + r[i][1:]
embed_count += 1
return tokens
class Qwen25_7BVLIModel(sd1_clip.SDClipModel):

View File

@@ -0,0 +1,428 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Tuple
import math
from comfy.ldm.modules.attention import optimized_attention_for_device
def process_qwen2vl_images(
images: torch.Tensor,
min_pixels: int = 3136,
max_pixels: int = 12845056,
patch_size: int = 14,
temporal_patch_size: int = 2,
merge_size: int = 2,
image_mean: list = None,
image_std: list = None,
):
if image_mean is None:
image_mean = [0.48145466, 0.4578275, 0.40821073]
if image_std is None:
image_std = [0.26862954, 0.26130258, 0.27577711]
batch_size, height, width, channels = images.shape
device = images.device
# dtype = images.dtype
images = images.permute(0, 3, 1, 2)
grid_thw_list = []
img = images[0]
factor = patch_size * merge_size
h_bar = round(height / factor) * factor
w_bar = round(width / factor) * factor
if h_bar * w_bar > max_pixels:
beta = math.sqrt((height * width) / max_pixels)
h_bar = max(factor, math.floor(height / beta / factor) * factor)
w_bar = max(factor, math.floor(width / beta / factor) * factor)
elif h_bar * w_bar < min_pixels:
beta = math.sqrt(min_pixels / (height * width))
h_bar = math.ceil(height * beta / factor) * factor
w_bar = math.ceil(width * beta / factor) * factor
img_resized = F.interpolate(
img.unsqueeze(0),
size=(h_bar, w_bar),
mode='bilinear',
align_corners=False
).squeeze(0)
normalized = img_resized.clone()
for c in range(3):
normalized[c] = (img_resized[c] - image_mean[c]) / image_std[c]
grid_h = h_bar // patch_size
grid_w = w_bar // patch_size
grid_thw = torch.tensor([1, grid_h, grid_w], device=device, dtype=torch.long)
pixel_values = normalized
grid_thw_list.append(grid_thw)
image_grid_thw = torch.stack(grid_thw_list)
grid_t = 1
channel = pixel_values.shape[0]
pixel_values = pixel_values.unsqueeze(0).repeat(2, 1, 1, 1)
patches = pixel_values.reshape(
grid_t,
temporal_patch_size,
channel,
grid_h // merge_size,
merge_size,
patch_size,
grid_w // merge_size,
merge_size,
patch_size,
)
patches = patches.permute(0, 3, 6, 4, 7, 2, 1, 5, 8)
flatten_patches = patches.reshape(
grid_t * grid_h * grid_w,
channel * temporal_patch_size * patch_size * patch_size
)
return flatten_patches, image_grid_thw
class VisionPatchEmbed(nn.Module):
def __init__(
self,
patch_size: int = 14,
temporal_patch_size: int = 2,
in_channels: int = 3,
embed_dim: int = 3584,
device=None,
dtype=None,
ops=None,
):
super().__init__()
self.patch_size = patch_size
self.temporal_patch_size = temporal_patch_size
self.in_channels = in_channels
self.embed_dim = embed_dim
kernel_size = [temporal_patch_size, patch_size, patch_size]
self.proj = ops.Conv3d(
in_channels,
embed_dim,
kernel_size=kernel_size,
stride=kernel_size,
bias=False,
device=device,
dtype=dtype
)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
hidden_states = hidden_states.view(
-1, self.in_channels, self.temporal_patch_size, self.patch_size, self.patch_size
)
hidden_states = self.proj(hidden_states)
return hidden_states.view(-1, self.embed_dim)
def rotate_half(x):
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb_vision(q, k, cos, sin):
cos, sin = cos.unsqueeze(-2).float(), sin.unsqueeze(-2).float()
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
class VisionRotaryEmbedding(nn.Module):
def __init__(self, dim: int, theta: float = 10000.0):
super().__init__()
self.dim = dim
self.theta = theta
def forward(self, seqlen: int, device) -> torch.Tensor:
inv_freq = 1.0 / (self.theta ** (torch.arange(0, self.dim, 2, dtype=torch.float, device=device) / self.dim))
seq = torch.arange(seqlen, device=inv_freq.device, dtype=inv_freq.dtype)
freqs = torch.outer(seq, inv_freq)
return freqs
class PatchMerger(nn.Module):
def __init__(self, dim: int, context_dim: int, spatial_merge_size: int = 2, device=None, dtype=None, ops=None):
super().__init__()
self.hidden_size = context_dim * (spatial_merge_size ** 2)
self.ln_q = ops.RMSNorm(context_dim, eps=1e-6, device=device, dtype=dtype)
self.mlp = nn.Sequential(
ops.Linear(self.hidden_size, self.hidden_size, device=device, dtype=dtype),
nn.GELU(),
ops.Linear(self.hidden_size, dim, device=device, dtype=dtype),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.ln_q(x).reshape(-1, self.hidden_size)
x = self.mlp(x)
return x
class VisionAttention(nn.Module):
def __init__(self, hidden_size: int, num_heads: int, device=None, dtype=None, ops=None):
super().__init__()
self.hidden_size = hidden_size
self.num_heads = num_heads
self.head_dim = hidden_size // num_heads
self.scaling = self.head_dim ** -0.5
self.qkv = ops.Linear(hidden_size, hidden_size * 3, bias=True, device=device, dtype=dtype)
self.proj = ops.Linear(hidden_size, hidden_size, bias=True, device=device, dtype=dtype)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
cu_seqlens=None,
optimized_attention=None,
) -> torch.Tensor:
if hidden_states.dim() == 2:
seq_length, _ = hidden_states.shape
batch_size = 1
hidden_states = hidden_states.unsqueeze(0)
else:
batch_size, seq_length, _ = hidden_states.shape
qkv = self.qkv(hidden_states)
qkv = qkv.reshape(batch_size, seq_length, 3, self.num_heads, self.head_dim)
query_states, key_states, value_states = qkv.reshape(seq_length, 3, self.num_heads, -1).permute(1, 0, 2, 3).unbind(0)
if position_embeddings is not None:
cos, sin = position_embeddings
query_states, key_states = apply_rotary_pos_emb_vision(query_states, key_states, cos, sin)
query_states = query_states.transpose(0, 1).unsqueeze(0)
key_states = key_states.transpose(0, 1).unsqueeze(0)
value_states = value_states.transpose(0, 1).unsqueeze(0)
lengths = cu_seqlens[1:] - cu_seqlens[:-1]
splits = [
torch.split(tensor, lengths.tolist(), dim=2) for tensor in (query_states, key_states, value_states)
]
attn_outputs = [
optimized_attention(q, k, v, self.num_heads, skip_reshape=True)
for q, k, v in zip(*splits)
]
attn_output = torch.cat(attn_outputs, dim=1)
attn_output = attn_output.reshape(seq_length, -1)
attn_output = self.proj(attn_output)
return attn_output
class VisionMLP(nn.Module):
def __init__(self, hidden_size: int, intermediate_size: int, device=None, dtype=None, ops=None):
super().__init__()
self.gate_proj = ops.Linear(hidden_size, intermediate_size, bias=True, device=device, dtype=dtype)
self.up_proj = ops.Linear(hidden_size, intermediate_size, bias=True, device=device, dtype=dtype)
self.down_proj = ops.Linear(intermediate_size, hidden_size, bias=True, device=device, dtype=dtype)
self.act_fn = nn.SiLU()
def forward(self, hidden_state):
return self.down_proj(self.act_fn(self.gate_proj(hidden_state)) * self.up_proj(hidden_state))
class VisionBlock(nn.Module):
def __init__(self, hidden_size: int, intermediate_size: int, num_heads: int, device=None, dtype=None, ops=None):
super().__init__()
self.norm1 = ops.RMSNorm(hidden_size, eps=1e-6, device=device, dtype=dtype)
self.norm2 = ops.RMSNorm(hidden_size, eps=1e-6, device=device, dtype=dtype)
self.attn = VisionAttention(hidden_size, num_heads, device=device, dtype=dtype, ops=ops)
self.mlp = VisionMLP(hidden_size, intermediate_size, device=device, dtype=dtype, ops=ops)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
cu_seqlens=None,
optimized_attention=None,
) -> torch.Tensor:
residual = hidden_states
hidden_states = self.norm1(hidden_states)
hidden_states = self.attn(hidden_states, position_embeddings, cu_seqlens, optimized_attention)
hidden_states = residual + hidden_states
residual = hidden_states
hidden_states = self.norm2(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
class Qwen2VLVisionTransformer(nn.Module):
def __init__(
self,
hidden_size: int = 3584,
output_hidden_size: int = 3584,
intermediate_size: int = 3420,
num_heads: int = 16,
num_layers: int = 32,
patch_size: int = 14,
temporal_patch_size: int = 2,
spatial_merge_size: int = 2,
window_size: int = 112,
device=None,
dtype=None,
ops=None
):
super().__init__()
self.hidden_size = hidden_size
self.patch_size = patch_size
self.spatial_merge_size = spatial_merge_size
self.window_size = window_size
self.fullatt_block_indexes = [7, 15, 23, 31]
self.patch_embed = VisionPatchEmbed(
patch_size=patch_size,
temporal_patch_size=temporal_patch_size,
in_channels=3,
embed_dim=hidden_size,
device=device,
dtype=dtype,
ops=ops,
)
head_dim = hidden_size // num_heads
self.rotary_pos_emb = VisionRotaryEmbedding(head_dim // 2)
self.blocks = nn.ModuleList([
VisionBlock(hidden_size, intermediate_size, num_heads, device, dtype, ops)
for _ in range(num_layers)
])
self.merger = PatchMerger(
dim=output_hidden_size,
context_dim=hidden_size,
spatial_merge_size=spatial_merge_size,
device=device,
dtype=dtype,
ops=ops,
)
def get_window_index(self, grid_thw):
window_index = []
cu_window_seqlens = [0]
window_index_id = 0
vit_merger_window_size = self.window_size // self.spatial_merge_size // self.patch_size
for grid_t, grid_h, grid_w in grid_thw:
llm_grid_h = grid_h // self.spatial_merge_size
llm_grid_w = grid_w // self.spatial_merge_size
index = torch.arange(grid_t * llm_grid_h * llm_grid_w).reshape(grid_t, llm_grid_h, llm_grid_w)
pad_h = vit_merger_window_size - llm_grid_h % vit_merger_window_size
pad_w = vit_merger_window_size - llm_grid_w % vit_merger_window_size
num_windows_h = (llm_grid_h + pad_h) // vit_merger_window_size
num_windows_w = (llm_grid_w + pad_w) // vit_merger_window_size
index_padded = F.pad(index, (0, pad_w, 0, pad_h), "constant", -100)
index_padded = index_padded.reshape(
grid_t,
num_windows_h,
vit_merger_window_size,
num_windows_w,
vit_merger_window_size,
)
index_padded = index_padded.permute(0, 1, 3, 2, 4).reshape(
grid_t,
num_windows_h * num_windows_w,
vit_merger_window_size,
vit_merger_window_size,
)
seqlens = (index_padded != -100).sum([2, 3]).reshape(-1)
index_padded = index_padded.reshape(-1)
index_new = index_padded[index_padded != -100]
window_index.append(index_new + window_index_id)
cu_seqlens_tmp = seqlens.cumsum(0) * self.spatial_merge_size * self.spatial_merge_size + cu_window_seqlens[-1]
cu_window_seqlens.extend(cu_seqlens_tmp.tolist())
window_index_id += (grid_t * llm_grid_h * llm_grid_w).item()
window_index = torch.cat(window_index, dim=0)
return window_index, cu_window_seqlens
def get_position_embeddings(self, grid_thw, device):
pos_ids = []
for t, h, w in grid_thw:
hpos_ids = torch.arange(h, device=device).unsqueeze(1).expand(-1, w)
hpos_ids = hpos_ids.reshape(
h // self.spatial_merge_size,
self.spatial_merge_size,
w // self.spatial_merge_size,
self.spatial_merge_size,
)
hpos_ids = hpos_ids.permute(0, 2, 1, 3).flatten()
wpos_ids = torch.arange(w, device=device).unsqueeze(0).expand(h, -1)
wpos_ids = wpos_ids.reshape(
h // self.spatial_merge_size,
self.spatial_merge_size,
w // self.spatial_merge_size,
self.spatial_merge_size,
)
wpos_ids = wpos_ids.permute(0, 2, 1, 3).flatten()
pos_ids.append(torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
pos_ids = torch.cat(pos_ids, dim=0)
max_grid_size = grid_thw[:, 1:].max()
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size, device)
return rotary_pos_emb_full[pos_ids].flatten(1)
def forward(
self,
pixel_values: torch.Tensor,
image_grid_thw: Optional[torch.Tensor] = None,
) -> torch.Tensor:
optimized_attention = optimized_attention_for_device(pixel_values.device, mask=False, small_input=True)
hidden_states = self.patch_embed(pixel_values)
window_index, cu_window_seqlens = self.get_window_index(image_grid_thw)
cu_window_seqlens = torch.tensor(cu_window_seqlens, device=hidden_states.device)
cu_window_seqlens = torch.unique_consecutive(cu_window_seqlens)
position_embeddings = self.get_position_embeddings(image_grid_thw, hidden_states.device)
seq_len, _ = hidden_states.size()
spatial_merge_unit = self.spatial_merge_size * self.spatial_merge_size
hidden_states = hidden_states.reshape(seq_len // spatial_merge_unit, spatial_merge_unit, -1)
hidden_states = hidden_states[window_index, :, :]
hidden_states = hidden_states.reshape(seq_len, -1)
position_embeddings = position_embeddings.reshape(seq_len // spatial_merge_unit, spatial_merge_unit, -1)
position_embeddings = position_embeddings[window_index, :, :]
position_embeddings = position_embeddings.reshape(seq_len, -1)
position_embeddings = torch.cat((position_embeddings, position_embeddings), dim=-1)
position_embeddings = (position_embeddings.cos(), position_embeddings.sin())
cu_seqlens = torch.repeat_interleave(image_grid_thw[:, 1] * image_grid_thw[:, 2], image_grid_thw[:, 0]).cumsum(
dim=0,
dtype=torch.int32,
)
cu_seqlens = F.pad(cu_seqlens, (1, 0), value=0)
for i, block in enumerate(self.blocks):
if i in self.fullatt_block_indexes:
cu_seqlens_now = cu_seqlens
else:
cu_seqlens_now = cu_window_seqlens
hidden_states = block(hidden_states, position_embeddings, cu_seqlens_now, optimized_attention=optimized_attention)
hidden_states = self.merger(hidden_states)
return hidden_states

View File

@@ -199,7 +199,7 @@ class T5Stack(torch.nn.Module):
self.final_layer_norm = T5LayerNorm(model_dim, dtype=dtype, device=device, operations=operations)
# self.dropout = nn.Dropout(config.dropout_rate)
def forward(self, x, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None):
def forward(self, x, attention_mask=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None, embeds_info=[]):
mask = None
if attention_mask is not None:
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])

View File

@@ -0,0 +1,63 @@
import node_helpers
import comfy.utils
PREFERRED_QWENIMAGE_RESOLUTIONS = [
(672, 1568),
(688, 1504),
(720, 1456),
(752, 1392),
(800, 1328),
(832, 1248),
(880, 1184),
(944, 1104),
(1024, 1024),
(1104, 944),
(1184, 880),
(1248, 832),
(1328, 800),
(1392, 752),
(1456, 720),
(1504, 688),
(1568, 672),
]
class TextEncodeQwenImageEdit:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"clip": ("CLIP", ),
"prompt": ("STRING", {"multiline": True, "dynamicPrompts": True}),
},
"optional": {"vae": ("VAE", ),
"image": ("IMAGE", ),}}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "encode"
CATEGORY = "advanced/conditioning"
def encode(self, clip, prompt, vae=None, image=None):
ref_latent = None
if image is None:
images = []
else:
images = [image]
if vae is not None:
width = image.shape[2]
height = image.shape[1]
aspect_ratio = width / height
_, width, height = min((abs(aspect_ratio - w / h), w, h) for w, h in PREFERRED_QWENIMAGE_RESOLUTIONS)
image = comfy.utils.common_upscale(image.movedim(-1, 1), width, height, "lanczos", "center").movedim(1, -1)
ref_latent = vae.encode(image[:, :, :, :3])
tokens = clip.tokenize(prompt, images=images)
conditioning = clip.encode_from_tokens_scheduled(tokens)
if ref_latent is not None:
conditioning = node_helpers.conditioning_set_values(conditioning, {"reference_latents": [ref_latent]}, append=True)
return (conditioning, )
NODE_CLASS_MAPPINGS = {
"TextEncodeQwenImageEdit": TextEncodeQwenImageEdit,
}

View File

@@ -2321,6 +2321,7 @@ async def init_builtin_extra_nodes():
"nodes_edit_model.py",
"nodes_tcfg.py",
"nodes_context_windows.py",
"nodes_qwen.py",
]
import_failed = []