mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-09-10 11:35:40 +00:00
* P2 of qwen edit model. * Typo. * Fix normal qwen. * Fix. * Make the TextEncodeQwenImageEdit also set the ref latent. If you don't want it to set the ref latent and want to use the ReferenceLatent node with your custom latent instead just disconnect the VAE.
2411 lines
96 KiB
Python
2411 lines
96 KiB
Python
from __future__ import annotations
|
|
import torch
|
|
|
|
|
|
import os
|
|
import sys
|
|
import json
|
|
import hashlib
|
|
import inspect
|
|
import traceback
|
|
import math
|
|
import time
|
|
import random
|
|
import logging
|
|
|
|
from PIL import Image, ImageOps, ImageSequence
|
|
from PIL.PngImagePlugin import PngInfo
|
|
|
|
import numpy as np
|
|
import safetensors.torch
|
|
|
|
sys.path.insert(0, os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy"))
|
|
|
|
import comfy.diffusers_load
|
|
import comfy.samplers
|
|
import comfy.sample
|
|
import comfy.sd
|
|
import comfy.utils
|
|
import comfy.controlnet
|
|
from comfy.comfy_types import IO, ComfyNodeABC, InputTypeDict, FileLocator
|
|
from comfy_api.internal import register_versions, ComfyAPIWithVersion
|
|
from comfy_api.version_list import supported_versions
|
|
from comfy_api.latest import io, ComfyExtension
|
|
|
|
import comfy.clip_vision
|
|
|
|
import comfy.model_management
|
|
from comfy.cli_args import args
|
|
|
|
import importlib
|
|
|
|
import folder_paths
|
|
import latent_preview
|
|
import node_helpers
|
|
|
|
def before_node_execution():
|
|
comfy.model_management.throw_exception_if_processing_interrupted()
|
|
|
|
def interrupt_processing(value=True):
|
|
comfy.model_management.interrupt_current_processing(value)
|
|
|
|
MAX_RESOLUTION=16384
|
|
|
|
class CLIPTextEncode(ComfyNodeABC):
|
|
@classmethod
|
|
def INPUT_TYPES(s) -> InputTypeDict:
|
|
return {
|
|
"required": {
|
|
"text": (IO.STRING, {"multiline": True, "dynamicPrompts": True, "tooltip": "The text to be encoded."}),
|
|
"clip": (IO.CLIP, {"tooltip": "The CLIP model used for encoding the text."})
|
|
}
|
|
}
|
|
RETURN_TYPES = (IO.CONDITIONING,)
|
|
OUTPUT_TOOLTIPS = ("A conditioning containing the embedded text used to guide the diffusion model.",)
|
|
FUNCTION = "encode"
|
|
|
|
CATEGORY = "conditioning"
|
|
DESCRIPTION = "Encodes a text prompt using a CLIP model into an embedding that can be used to guide the diffusion model towards generating specific images."
|
|
|
|
def encode(self, clip, text):
|
|
if clip is None:
|
|
raise RuntimeError("ERROR: clip input is invalid: None\n\nIf the clip is from a checkpoint loader node your checkpoint does not contain a valid clip or text encoder model.")
|
|
tokens = clip.tokenize(text)
|
|
return (clip.encode_from_tokens_scheduled(tokens), )
|
|
|
|
|
|
class ConditioningCombine:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"conditioning_1": ("CONDITIONING", ), "conditioning_2": ("CONDITIONING", )}}
|
|
RETURN_TYPES = ("CONDITIONING",)
|
|
FUNCTION = "combine"
|
|
|
|
CATEGORY = "conditioning"
|
|
|
|
def combine(self, conditioning_1, conditioning_2):
|
|
return (conditioning_1 + conditioning_2, )
|
|
|
|
class ConditioningAverage :
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"conditioning_to": ("CONDITIONING", ), "conditioning_from": ("CONDITIONING", ),
|
|
"conditioning_to_strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01})
|
|
}}
|
|
RETURN_TYPES = ("CONDITIONING",)
|
|
FUNCTION = "addWeighted"
|
|
|
|
CATEGORY = "conditioning"
|
|
|
|
def addWeighted(self, conditioning_to, conditioning_from, conditioning_to_strength):
|
|
out = []
|
|
|
|
if len(conditioning_from) > 1:
|
|
logging.warning("Warning: ConditioningAverage conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")
|
|
|
|
cond_from = conditioning_from[0][0]
|
|
pooled_output_from = conditioning_from[0][1].get("pooled_output", None)
|
|
|
|
for i in range(len(conditioning_to)):
|
|
t1 = conditioning_to[i][0]
|
|
pooled_output_to = conditioning_to[i][1].get("pooled_output", pooled_output_from)
|
|
t0 = cond_from[:,:t1.shape[1]]
|
|
if t0.shape[1] < t1.shape[1]:
|
|
t0 = torch.cat([t0] + [torch.zeros((1, (t1.shape[1] - t0.shape[1]), t1.shape[2]))], dim=1)
|
|
|
|
tw = torch.mul(t1, conditioning_to_strength) + torch.mul(t0, (1.0 - conditioning_to_strength))
|
|
t_to = conditioning_to[i][1].copy()
|
|
if pooled_output_from is not None and pooled_output_to is not None:
|
|
t_to["pooled_output"] = torch.mul(pooled_output_to, conditioning_to_strength) + torch.mul(pooled_output_from, (1.0 - conditioning_to_strength))
|
|
elif pooled_output_from is not None:
|
|
t_to["pooled_output"] = pooled_output_from
|
|
|
|
n = [tw, t_to]
|
|
out.append(n)
|
|
return (out, )
|
|
|
|
class ConditioningConcat:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"conditioning_to": ("CONDITIONING",),
|
|
"conditioning_from": ("CONDITIONING",),
|
|
}}
|
|
RETURN_TYPES = ("CONDITIONING",)
|
|
FUNCTION = "concat"
|
|
|
|
CATEGORY = "conditioning"
|
|
|
|
def concat(self, conditioning_to, conditioning_from):
|
|
out = []
|
|
|
|
if len(conditioning_from) > 1:
|
|
logging.warning("Warning: ConditioningConcat conditioning_from contains more than 1 cond, only the first one will actually be applied to conditioning_to.")
|
|
|
|
cond_from = conditioning_from[0][0]
|
|
|
|
for i in range(len(conditioning_to)):
|
|
t1 = conditioning_to[i][0]
|
|
tw = torch.cat((t1, cond_from),1)
|
|
n = [tw, conditioning_to[i][1].copy()]
|
|
out.append(n)
|
|
|
|
return (out, )
|
|
|
|
class ConditioningSetArea:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"conditioning": ("CONDITIONING", ),
|
|
"width": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
|
|
"height": ("INT", {"default": 64, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
|
|
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
|
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
|
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
|
}}
|
|
RETURN_TYPES = ("CONDITIONING",)
|
|
FUNCTION = "append"
|
|
|
|
CATEGORY = "conditioning"
|
|
|
|
def append(self, conditioning, width, height, x, y, strength):
|
|
c = node_helpers.conditioning_set_values(conditioning, {"area": (height // 8, width // 8, y // 8, x // 8),
|
|
"strength": strength,
|
|
"set_area_to_bounds": False})
|
|
return (c, )
|
|
|
|
class ConditioningSetAreaPercentage:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"conditioning": ("CONDITIONING", ),
|
|
"width": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
|
|
"height": ("FLOAT", {"default": 1.0, "min": 0, "max": 1.0, "step": 0.01}),
|
|
"x": ("FLOAT", {"default": 0, "min": 0, "max": 1.0, "step": 0.01}),
|
|
"y": ("FLOAT", {"default": 0, "min": 0, "max": 1.0, "step": 0.01}),
|
|
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
|
}}
|
|
RETURN_TYPES = ("CONDITIONING",)
|
|
FUNCTION = "append"
|
|
|
|
CATEGORY = "conditioning"
|
|
|
|
def append(self, conditioning, width, height, x, y, strength):
|
|
c = node_helpers.conditioning_set_values(conditioning, {"area": ("percentage", height, width, y, x),
|
|
"strength": strength,
|
|
"set_area_to_bounds": False})
|
|
return (c, )
|
|
|
|
class ConditioningSetAreaStrength:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"conditioning": ("CONDITIONING", ),
|
|
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
|
}}
|
|
RETURN_TYPES = ("CONDITIONING",)
|
|
FUNCTION = "append"
|
|
|
|
CATEGORY = "conditioning"
|
|
|
|
def append(self, conditioning, strength):
|
|
c = node_helpers.conditioning_set_values(conditioning, {"strength": strength})
|
|
return (c, )
|
|
|
|
|
|
class ConditioningSetMask:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"conditioning": ("CONDITIONING", ),
|
|
"mask": ("MASK", ),
|
|
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
|
"set_cond_area": (["default", "mask bounds"],),
|
|
}}
|
|
RETURN_TYPES = ("CONDITIONING",)
|
|
FUNCTION = "append"
|
|
|
|
CATEGORY = "conditioning"
|
|
|
|
def append(self, conditioning, mask, set_cond_area, strength):
|
|
set_area_to_bounds = False
|
|
if set_cond_area != "default":
|
|
set_area_to_bounds = True
|
|
if len(mask.shape) < 3:
|
|
mask = mask.unsqueeze(0)
|
|
|
|
c = node_helpers.conditioning_set_values(conditioning, {"mask": mask,
|
|
"set_area_to_bounds": set_area_to_bounds,
|
|
"mask_strength": strength})
|
|
return (c, )
|
|
|
|
class ConditioningZeroOut:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"conditioning": ("CONDITIONING", )}}
|
|
RETURN_TYPES = ("CONDITIONING",)
|
|
FUNCTION = "zero_out"
|
|
|
|
CATEGORY = "advanced/conditioning"
|
|
|
|
def zero_out(self, conditioning):
|
|
c = []
|
|
for t in conditioning:
|
|
d = t[1].copy()
|
|
pooled_output = d.get("pooled_output", None)
|
|
if pooled_output is not None:
|
|
d["pooled_output"] = torch.zeros_like(pooled_output)
|
|
conditioning_lyrics = d.get("conditioning_lyrics", None)
|
|
if conditioning_lyrics is not None:
|
|
d["conditioning_lyrics"] = torch.zeros_like(conditioning_lyrics)
|
|
n = [torch.zeros_like(t[0]), d]
|
|
c.append(n)
|
|
return (c, )
|
|
|
|
class ConditioningSetTimestepRange:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"conditioning": ("CONDITIONING", ),
|
|
"start": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
|
|
"end": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
|
|
}}
|
|
RETURN_TYPES = ("CONDITIONING",)
|
|
FUNCTION = "set_range"
|
|
|
|
CATEGORY = "advanced/conditioning"
|
|
|
|
def set_range(self, conditioning, start, end):
|
|
c = node_helpers.conditioning_set_values(conditioning, {"start_percent": start,
|
|
"end_percent": end})
|
|
return (c, )
|
|
|
|
class VAEDecode:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"samples": ("LATENT", {"tooltip": "The latent to be decoded."}),
|
|
"vae": ("VAE", {"tooltip": "The VAE model used for decoding the latent."})
|
|
}
|
|
}
|
|
RETURN_TYPES = ("IMAGE",)
|
|
OUTPUT_TOOLTIPS = ("The decoded image.",)
|
|
FUNCTION = "decode"
|
|
|
|
CATEGORY = "latent"
|
|
DESCRIPTION = "Decodes latent images back into pixel space images."
|
|
|
|
def decode(self, vae, samples):
|
|
images = vae.decode(samples["samples"])
|
|
if len(images.shape) == 5: #Combine batches
|
|
images = images.reshape(-1, images.shape[-3], images.shape[-2], images.shape[-1])
|
|
return (images, )
|
|
|
|
class VAEDecodeTiled:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"samples": ("LATENT", ), "vae": ("VAE", ),
|
|
"tile_size": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 32}),
|
|
"overlap": ("INT", {"default": 64, "min": 0, "max": 4096, "step": 32}),
|
|
"temporal_size": ("INT", {"default": 64, "min": 8, "max": 4096, "step": 4, "tooltip": "Only used for video VAEs: Amount of frames to decode at a time."}),
|
|
"temporal_overlap": ("INT", {"default": 8, "min": 4, "max": 4096, "step": 4, "tooltip": "Only used for video VAEs: Amount of frames to overlap."}),
|
|
}}
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "decode"
|
|
|
|
CATEGORY = "_for_testing"
|
|
|
|
def decode(self, vae, samples, tile_size, overlap=64, temporal_size=64, temporal_overlap=8):
|
|
if tile_size < overlap * 4:
|
|
overlap = tile_size // 4
|
|
if temporal_size < temporal_overlap * 2:
|
|
temporal_overlap = temporal_overlap // 2
|
|
temporal_compression = vae.temporal_compression_decode()
|
|
if temporal_compression is not None:
|
|
temporal_size = max(2, temporal_size // temporal_compression)
|
|
temporal_overlap = max(1, min(temporal_size // 2, temporal_overlap // temporal_compression))
|
|
else:
|
|
temporal_size = None
|
|
temporal_overlap = None
|
|
|
|
compression = vae.spacial_compression_decode()
|
|
images = vae.decode_tiled(samples["samples"], tile_x=tile_size // compression, tile_y=tile_size // compression, overlap=overlap // compression, tile_t=temporal_size, overlap_t=temporal_overlap)
|
|
if len(images.shape) == 5: #Combine batches
|
|
images = images.reshape(-1, images.shape[-3], images.shape[-2], images.shape[-1])
|
|
return (images, )
|
|
|
|
class VAEEncode:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", )}}
|
|
RETURN_TYPES = ("LATENT",)
|
|
FUNCTION = "encode"
|
|
|
|
CATEGORY = "latent"
|
|
|
|
def encode(self, vae, pixels):
|
|
t = vae.encode(pixels[:,:,:,:3])
|
|
return ({"samples":t}, )
|
|
|
|
class VAEEncodeTiled:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"pixels": ("IMAGE", ), "vae": ("VAE", ),
|
|
"tile_size": ("INT", {"default": 512, "min": 64, "max": 4096, "step": 64}),
|
|
"overlap": ("INT", {"default": 64, "min": 0, "max": 4096, "step": 32}),
|
|
"temporal_size": ("INT", {"default": 64, "min": 8, "max": 4096, "step": 4, "tooltip": "Only used for video VAEs: Amount of frames to encode at a time."}),
|
|
"temporal_overlap": ("INT", {"default": 8, "min": 4, "max": 4096, "step": 4, "tooltip": "Only used for video VAEs: Amount of frames to overlap."}),
|
|
}}
|
|
RETURN_TYPES = ("LATENT",)
|
|
FUNCTION = "encode"
|
|
|
|
CATEGORY = "_for_testing"
|
|
|
|
def encode(self, vae, pixels, tile_size, overlap, temporal_size=64, temporal_overlap=8):
|
|
t = vae.encode_tiled(pixels[:,:,:,:3], tile_x=tile_size, tile_y=tile_size, overlap=overlap, tile_t=temporal_size, overlap_t=temporal_overlap)
|
|
return ({"samples": t}, )
|
|
|
|
class VAEEncodeForInpaint:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "pixels": ("IMAGE", ), "vae": ("VAE", ), "mask": ("MASK", ), "grow_mask_by": ("INT", {"default": 6, "min": 0, "max": 64, "step": 1}),}}
|
|
RETURN_TYPES = ("LATENT",)
|
|
FUNCTION = "encode"
|
|
|
|
CATEGORY = "latent/inpaint"
|
|
|
|
def encode(self, vae, pixels, mask, grow_mask_by=6):
|
|
x = (pixels.shape[1] // vae.downscale_ratio) * vae.downscale_ratio
|
|
y = (pixels.shape[2] // vae.downscale_ratio) * vae.downscale_ratio
|
|
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
|
|
|
|
pixels = pixels.clone()
|
|
if pixels.shape[1] != x or pixels.shape[2] != y:
|
|
x_offset = (pixels.shape[1] % vae.downscale_ratio) // 2
|
|
y_offset = (pixels.shape[2] % vae.downscale_ratio) // 2
|
|
pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
|
|
mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
|
|
|
|
#grow mask by a few pixels to keep things seamless in latent space
|
|
if grow_mask_by == 0:
|
|
mask_erosion = mask
|
|
else:
|
|
kernel_tensor = torch.ones((1, 1, grow_mask_by, grow_mask_by))
|
|
padding = math.ceil((grow_mask_by - 1) / 2)
|
|
|
|
mask_erosion = torch.clamp(torch.nn.functional.conv2d(mask.round(), kernel_tensor, padding=padding), 0, 1)
|
|
|
|
m = (1.0 - mask.round()).squeeze(1)
|
|
for i in range(3):
|
|
pixels[:,:,:,i] -= 0.5
|
|
pixels[:,:,:,i] *= m
|
|
pixels[:,:,:,i] += 0.5
|
|
t = vae.encode(pixels)
|
|
|
|
return ({"samples":t, "noise_mask": (mask_erosion[:,:,:x,:y].round())}, )
|
|
|
|
|
|
class InpaintModelConditioning:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"positive": ("CONDITIONING", ),
|
|
"negative": ("CONDITIONING", ),
|
|
"vae": ("VAE", ),
|
|
"pixels": ("IMAGE", ),
|
|
"mask": ("MASK", ),
|
|
"noise_mask": ("BOOLEAN", {"default": True, "tooltip": "Add a noise mask to the latent so sampling will only happen within the mask. Might improve results or completely break things depending on the model."}),
|
|
}}
|
|
|
|
RETURN_TYPES = ("CONDITIONING","CONDITIONING","LATENT")
|
|
RETURN_NAMES = ("positive", "negative", "latent")
|
|
FUNCTION = "encode"
|
|
|
|
CATEGORY = "conditioning/inpaint"
|
|
|
|
def encode(self, positive, negative, pixels, vae, mask, noise_mask=True):
|
|
x = (pixels.shape[1] // 8) * 8
|
|
y = (pixels.shape[2] // 8) * 8
|
|
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(pixels.shape[1], pixels.shape[2]), mode="bilinear")
|
|
|
|
orig_pixels = pixels
|
|
pixels = orig_pixels.clone()
|
|
if pixels.shape[1] != x or pixels.shape[2] != y:
|
|
x_offset = (pixels.shape[1] % 8) // 2
|
|
y_offset = (pixels.shape[2] % 8) // 2
|
|
pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
|
|
mask = mask[:,:,x_offset:x + x_offset, y_offset:y + y_offset]
|
|
|
|
m = (1.0 - mask.round()).squeeze(1)
|
|
for i in range(3):
|
|
pixels[:,:,:,i] -= 0.5
|
|
pixels[:,:,:,i] *= m
|
|
pixels[:,:,:,i] += 0.5
|
|
concat_latent = vae.encode(pixels)
|
|
orig_latent = vae.encode(orig_pixels)
|
|
|
|
out_latent = {}
|
|
|
|
out_latent["samples"] = orig_latent
|
|
if noise_mask:
|
|
out_latent["noise_mask"] = mask
|
|
|
|
out = []
|
|
for conditioning in [positive, negative]:
|
|
c = node_helpers.conditioning_set_values(conditioning, {"concat_latent_image": concat_latent,
|
|
"concat_mask": mask})
|
|
out.append(c)
|
|
return (out[0], out[1], out_latent)
|
|
|
|
|
|
class SaveLatent:
|
|
def __init__(self):
|
|
self.output_dir = folder_paths.get_output_directory()
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "samples": ("LATENT", ),
|
|
"filename_prefix": ("STRING", {"default": "latents/ComfyUI"})},
|
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
|
|
}
|
|
RETURN_TYPES = ()
|
|
FUNCTION = "save"
|
|
|
|
OUTPUT_NODE = True
|
|
|
|
CATEGORY = "_for_testing"
|
|
|
|
def save(self, samples, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
|
|
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
|
|
|
|
# support save metadata for latent sharing
|
|
prompt_info = ""
|
|
if prompt is not None:
|
|
prompt_info = json.dumps(prompt)
|
|
|
|
metadata = None
|
|
if not args.disable_metadata:
|
|
metadata = {"prompt": prompt_info}
|
|
if extra_pnginfo is not None:
|
|
for x in extra_pnginfo:
|
|
metadata[x] = json.dumps(extra_pnginfo[x])
|
|
|
|
file = f"{filename}_{counter:05}_.latent"
|
|
|
|
results: list[FileLocator] = []
|
|
results.append({
|
|
"filename": file,
|
|
"subfolder": subfolder,
|
|
"type": "output"
|
|
})
|
|
|
|
file = os.path.join(full_output_folder, file)
|
|
|
|
output = {}
|
|
output["latent_tensor"] = samples["samples"].contiguous()
|
|
output["latent_format_version_0"] = torch.tensor([])
|
|
|
|
comfy.utils.save_torch_file(output, file, metadata=metadata)
|
|
return { "ui": { "latents": results } }
|
|
|
|
|
|
class LoadLatent:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
input_dir = folder_paths.get_input_directory()
|
|
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f)) and f.endswith(".latent")]
|
|
return {"required": {"latent": [sorted(files), ]}, }
|
|
|
|
CATEGORY = "_for_testing"
|
|
|
|
RETURN_TYPES = ("LATENT", )
|
|
FUNCTION = "load"
|
|
|
|
def load(self, latent):
|
|
latent_path = folder_paths.get_annotated_filepath(latent)
|
|
latent = safetensors.torch.load_file(latent_path, device="cpu")
|
|
multiplier = 1.0
|
|
if "latent_format_version_0" not in latent:
|
|
multiplier = 1.0 / 0.18215
|
|
samples = {"samples": latent["latent_tensor"].float() * multiplier}
|
|
return (samples, )
|
|
|
|
@classmethod
|
|
def IS_CHANGED(s, latent):
|
|
image_path = folder_paths.get_annotated_filepath(latent)
|
|
m = hashlib.sha256()
|
|
with open(image_path, 'rb') as f:
|
|
m.update(f.read())
|
|
return m.digest().hex()
|
|
|
|
@classmethod
|
|
def VALIDATE_INPUTS(s, latent):
|
|
if not folder_paths.exists_annotated_filepath(latent):
|
|
return "Invalid latent file: {}".format(latent)
|
|
return True
|
|
|
|
|
|
class CheckpointLoader:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "config_name": (folder_paths.get_filename_list("configs"), ),
|
|
"ckpt_name": (folder_paths.get_filename_list("checkpoints"), )}}
|
|
RETURN_TYPES = ("MODEL", "CLIP", "VAE")
|
|
FUNCTION = "load_checkpoint"
|
|
|
|
CATEGORY = "advanced/loaders"
|
|
DEPRECATED = True
|
|
|
|
def load_checkpoint(self, config_name, ckpt_name):
|
|
config_path = folder_paths.get_full_path("configs", config_name)
|
|
ckpt_path = folder_paths.get_full_path_or_raise("checkpoints", ckpt_name)
|
|
return comfy.sd.load_checkpoint(config_path, ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
|
|
|
|
class CheckpointLoaderSimple:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"ckpt_name": (folder_paths.get_filename_list("checkpoints"), {"tooltip": "The name of the checkpoint (model) to load."}),
|
|
}
|
|
}
|
|
RETURN_TYPES = ("MODEL", "CLIP", "VAE")
|
|
OUTPUT_TOOLTIPS = ("The model used for denoising latents.",
|
|
"The CLIP model used for encoding text prompts.",
|
|
"The VAE model used for encoding and decoding images to and from latent space.")
|
|
FUNCTION = "load_checkpoint"
|
|
|
|
CATEGORY = "loaders"
|
|
DESCRIPTION = "Loads a diffusion model checkpoint, diffusion models are used to denoise latents."
|
|
|
|
def load_checkpoint(self, ckpt_name):
|
|
ckpt_path = folder_paths.get_full_path_or_raise("checkpoints", ckpt_name)
|
|
out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
|
|
return out[:3]
|
|
|
|
class DiffusersLoader:
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
paths = []
|
|
for search_path in folder_paths.get_folder_paths("diffusers"):
|
|
if os.path.exists(search_path):
|
|
for root, subdir, files in os.walk(search_path, followlinks=True):
|
|
if "model_index.json" in files:
|
|
paths.append(os.path.relpath(root, start=search_path))
|
|
|
|
return {"required": {"model_path": (paths,), }}
|
|
RETURN_TYPES = ("MODEL", "CLIP", "VAE")
|
|
FUNCTION = "load_checkpoint"
|
|
|
|
CATEGORY = "advanced/loaders/deprecated"
|
|
|
|
def load_checkpoint(self, model_path, output_vae=True, output_clip=True):
|
|
for search_path in folder_paths.get_folder_paths("diffusers"):
|
|
if os.path.exists(search_path):
|
|
path = os.path.join(search_path, model_path)
|
|
if os.path.exists(path):
|
|
model_path = path
|
|
break
|
|
|
|
return comfy.diffusers_load.load_diffusers(model_path, output_vae=output_vae, output_clip=output_clip, embedding_directory=folder_paths.get_folder_paths("embeddings"))
|
|
|
|
|
|
class unCLIPCheckpointLoader:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "ckpt_name": (folder_paths.get_filename_list("checkpoints"), ),
|
|
}}
|
|
RETURN_TYPES = ("MODEL", "CLIP", "VAE", "CLIP_VISION")
|
|
FUNCTION = "load_checkpoint"
|
|
|
|
CATEGORY = "loaders"
|
|
|
|
def load_checkpoint(self, ckpt_name, output_vae=True, output_clip=True):
|
|
ckpt_path = folder_paths.get_full_path_or_raise("checkpoints", ckpt_name)
|
|
out = comfy.sd.load_checkpoint_guess_config(ckpt_path, output_vae=True, output_clip=True, output_clipvision=True, embedding_directory=folder_paths.get_folder_paths("embeddings"))
|
|
return out
|
|
|
|
class CLIPSetLastLayer:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "clip": ("CLIP", ),
|
|
"stop_at_clip_layer": ("INT", {"default": -1, "min": -24, "max": -1, "step": 1}),
|
|
}}
|
|
RETURN_TYPES = ("CLIP",)
|
|
FUNCTION = "set_last_layer"
|
|
|
|
CATEGORY = "conditioning"
|
|
|
|
def set_last_layer(self, clip, stop_at_clip_layer):
|
|
clip = clip.clone()
|
|
clip.clip_layer(stop_at_clip_layer)
|
|
return (clip,)
|
|
|
|
class LoraLoader:
|
|
def __init__(self):
|
|
self.loaded_lora = None
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"model": ("MODEL", {"tooltip": "The diffusion model the LoRA will be applied to."}),
|
|
"clip": ("CLIP", {"tooltip": "The CLIP model the LoRA will be applied to."}),
|
|
"lora_name": (folder_paths.get_filename_list("loras"), {"tooltip": "The name of the LoRA."}),
|
|
"strength_model": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01, "tooltip": "How strongly to modify the diffusion model. This value can be negative."}),
|
|
"strength_clip": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01, "tooltip": "How strongly to modify the CLIP model. This value can be negative."}),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("MODEL", "CLIP")
|
|
OUTPUT_TOOLTIPS = ("The modified diffusion model.", "The modified CLIP model.")
|
|
FUNCTION = "load_lora"
|
|
|
|
CATEGORY = "loaders"
|
|
DESCRIPTION = "LoRAs are used to modify diffusion and CLIP models, altering the way in which latents are denoised such as applying styles. Multiple LoRA nodes can be linked together."
|
|
|
|
def load_lora(self, model, clip, lora_name, strength_model, strength_clip):
|
|
if strength_model == 0 and strength_clip == 0:
|
|
return (model, clip)
|
|
|
|
lora_path = folder_paths.get_full_path_or_raise("loras", lora_name)
|
|
lora = None
|
|
if self.loaded_lora is not None:
|
|
if self.loaded_lora[0] == lora_path:
|
|
lora = self.loaded_lora[1]
|
|
else:
|
|
self.loaded_lora = None
|
|
|
|
if lora is None:
|
|
lora = comfy.utils.load_torch_file(lora_path, safe_load=True)
|
|
self.loaded_lora = (lora_path, lora)
|
|
|
|
model_lora, clip_lora = comfy.sd.load_lora_for_models(model, clip, lora, strength_model, strength_clip)
|
|
return (model_lora, clip_lora)
|
|
|
|
class LoraLoaderModelOnly(LoraLoader):
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "model": ("MODEL",),
|
|
"lora_name": (folder_paths.get_filename_list("loras"), ),
|
|
"strength_model": ("FLOAT", {"default": 1.0, "min": -100.0, "max": 100.0, "step": 0.01}),
|
|
}}
|
|
RETURN_TYPES = ("MODEL",)
|
|
FUNCTION = "load_lora_model_only"
|
|
|
|
def load_lora_model_only(self, model, lora_name, strength_model):
|
|
return (self.load_lora(model, None, lora_name, strength_model, 0)[0],)
|
|
|
|
class VAELoader:
|
|
@staticmethod
|
|
def vae_list():
|
|
vaes = folder_paths.get_filename_list("vae")
|
|
approx_vaes = folder_paths.get_filename_list("vae_approx")
|
|
sdxl_taesd_enc = False
|
|
sdxl_taesd_dec = False
|
|
sd1_taesd_enc = False
|
|
sd1_taesd_dec = False
|
|
sd3_taesd_enc = False
|
|
sd3_taesd_dec = False
|
|
f1_taesd_enc = False
|
|
f1_taesd_dec = False
|
|
|
|
for v in approx_vaes:
|
|
if v.startswith("taesd_decoder."):
|
|
sd1_taesd_dec = True
|
|
elif v.startswith("taesd_encoder."):
|
|
sd1_taesd_enc = True
|
|
elif v.startswith("taesdxl_decoder."):
|
|
sdxl_taesd_dec = True
|
|
elif v.startswith("taesdxl_encoder."):
|
|
sdxl_taesd_enc = True
|
|
elif v.startswith("taesd3_decoder."):
|
|
sd3_taesd_dec = True
|
|
elif v.startswith("taesd3_encoder."):
|
|
sd3_taesd_enc = True
|
|
elif v.startswith("taef1_encoder."):
|
|
f1_taesd_dec = True
|
|
elif v.startswith("taef1_decoder."):
|
|
f1_taesd_enc = True
|
|
if sd1_taesd_dec and sd1_taesd_enc:
|
|
vaes.append("taesd")
|
|
if sdxl_taesd_dec and sdxl_taesd_enc:
|
|
vaes.append("taesdxl")
|
|
if sd3_taesd_dec and sd3_taesd_enc:
|
|
vaes.append("taesd3")
|
|
if f1_taesd_dec and f1_taesd_enc:
|
|
vaes.append("taef1")
|
|
return vaes
|
|
|
|
@staticmethod
|
|
def load_taesd(name):
|
|
sd = {}
|
|
approx_vaes = folder_paths.get_filename_list("vae_approx")
|
|
|
|
encoder = next(filter(lambda a: a.startswith("{}_encoder.".format(name)), approx_vaes))
|
|
decoder = next(filter(lambda a: a.startswith("{}_decoder.".format(name)), approx_vaes))
|
|
|
|
enc = comfy.utils.load_torch_file(folder_paths.get_full_path_or_raise("vae_approx", encoder))
|
|
for k in enc:
|
|
sd["taesd_encoder.{}".format(k)] = enc[k]
|
|
|
|
dec = comfy.utils.load_torch_file(folder_paths.get_full_path_or_raise("vae_approx", decoder))
|
|
for k in dec:
|
|
sd["taesd_decoder.{}".format(k)] = dec[k]
|
|
|
|
if name == "taesd":
|
|
sd["vae_scale"] = torch.tensor(0.18215)
|
|
sd["vae_shift"] = torch.tensor(0.0)
|
|
elif name == "taesdxl":
|
|
sd["vae_scale"] = torch.tensor(0.13025)
|
|
sd["vae_shift"] = torch.tensor(0.0)
|
|
elif name == "taesd3":
|
|
sd["vae_scale"] = torch.tensor(1.5305)
|
|
sd["vae_shift"] = torch.tensor(0.0609)
|
|
elif name == "taef1":
|
|
sd["vae_scale"] = torch.tensor(0.3611)
|
|
sd["vae_shift"] = torch.tensor(0.1159)
|
|
return sd
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "vae_name": (s.vae_list(), )}}
|
|
RETURN_TYPES = ("VAE",)
|
|
FUNCTION = "load_vae"
|
|
|
|
CATEGORY = "loaders"
|
|
|
|
#TODO: scale factor?
|
|
def load_vae(self, vae_name):
|
|
if vae_name in ["taesd", "taesdxl", "taesd3", "taef1"]:
|
|
sd = self.load_taesd(vae_name)
|
|
else:
|
|
vae_path = folder_paths.get_full_path_or_raise("vae", vae_name)
|
|
sd = comfy.utils.load_torch_file(vae_path)
|
|
vae = comfy.sd.VAE(sd=sd)
|
|
vae.throw_exception_if_invalid()
|
|
return (vae,)
|
|
|
|
class ControlNetLoader:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
|
|
|
|
RETURN_TYPES = ("CONTROL_NET",)
|
|
FUNCTION = "load_controlnet"
|
|
|
|
CATEGORY = "loaders"
|
|
|
|
def load_controlnet(self, control_net_name):
|
|
controlnet_path = folder_paths.get_full_path_or_raise("controlnet", control_net_name)
|
|
controlnet = comfy.controlnet.load_controlnet(controlnet_path)
|
|
if controlnet is None:
|
|
raise RuntimeError("ERROR: controlnet file is invalid and does not contain a valid controlnet model.")
|
|
return (controlnet,)
|
|
|
|
class DiffControlNetLoader:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "model": ("MODEL",),
|
|
"control_net_name": (folder_paths.get_filename_list("controlnet"), )}}
|
|
|
|
RETURN_TYPES = ("CONTROL_NET",)
|
|
FUNCTION = "load_controlnet"
|
|
|
|
CATEGORY = "loaders"
|
|
|
|
def load_controlnet(self, model, control_net_name):
|
|
controlnet_path = folder_paths.get_full_path_or_raise("controlnet", control_net_name)
|
|
controlnet = comfy.controlnet.load_controlnet(controlnet_path, model)
|
|
return (controlnet,)
|
|
|
|
|
|
class ControlNetApply:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"conditioning": ("CONDITIONING", ),
|
|
"control_net": ("CONTROL_NET", ),
|
|
"image": ("IMAGE", ),
|
|
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
|
|
}}
|
|
RETURN_TYPES = ("CONDITIONING",)
|
|
FUNCTION = "apply_controlnet"
|
|
|
|
DEPRECATED = True
|
|
CATEGORY = "conditioning/controlnet"
|
|
|
|
def apply_controlnet(self, conditioning, control_net, image, strength):
|
|
if strength == 0:
|
|
return (conditioning, )
|
|
|
|
c = []
|
|
control_hint = image.movedim(-1,1)
|
|
for t in conditioning:
|
|
n = [t[0], t[1].copy()]
|
|
c_net = control_net.copy().set_cond_hint(control_hint, strength)
|
|
if 'control' in t[1]:
|
|
c_net.set_previous_controlnet(t[1]['control'])
|
|
n[1]['control'] = c_net
|
|
n[1]['control_apply_to_uncond'] = True
|
|
c.append(n)
|
|
return (c, )
|
|
|
|
|
|
class ControlNetApplyAdvanced:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"positive": ("CONDITIONING", ),
|
|
"negative": ("CONDITIONING", ),
|
|
"control_net": ("CONTROL_NET", ),
|
|
"image": ("IMAGE", ),
|
|
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01}),
|
|
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.001}),
|
|
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.001})
|
|
},
|
|
"optional": {"vae": ("VAE", ),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("CONDITIONING","CONDITIONING")
|
|
RETURN_NAMES = ("positive", "negative")
|
|
FUNCTION = "apply_controlnet"
|
|
|
|
CATEGORY = "conditioning/controlnet"
|
|
|
|
def apply_controlnet(self, positive, negative, control_net, image, strength, start_percent, end_percent, vae=None, extra_concat=[]):
|
|
if strength == 0:
|
|
return (positive, negative)
|
|
|
|
control_hint = image.movedim(-1,1)
|
|
cnets = {}
|
|
|
|
out = []
|
|
for conditioning in [positive, negative]:
|
|
c = []
|
|
for t in conditioning:
|
|
d = t[1].copy()
|
|
|
|
prev_cnet = d.get('control', None)
|
|
if prev_cnet in cnets:
|
|
c_net = cnets[prev_cnet]
|
|
else:
|
|
c_net = control_net.copy().set_cond_hint(control_hint, strength, (start_percent, end_percent), vae=vae, extra_concat=extra_concat)
|
|
c_net.set_previous_controlnet(prev_cnet)
|
|
cnets[prev_cnet] = c_net
|
|
|
|
d['control'] = c_net
|
|
d['control_apply_to_uncond'] = False
|
|
n = [t[0], d]
|
|
c.append(n)
|
|
out.append(c)
|
|
return (out[0], out[1])
|
|
|
|
|
|
class UNETLoader:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "unet_name": (folder_paths.get_filename_list("diffusion_models"), ),
|
|
"weight_dtype": (["default", "fp8_e4m3fn", "fp8_e4m3fn_fast", "fp8_e5m2"],)
|
|
}}
|
|
RETURN_TYPES = ("MODEL",)
|
|
FUNCTION = "load_unet"
|
|
|
|
CATEGORY = "advanced/loaders"
|
|
|
|
def load_unet(self, unet_name, weight_dtype):
|
|
model_options = {}
|
|
if weight_dtype == "fp8_e4m3fn":
|
|
model_options["dtype"] = torch.float8_e4m3fn
|
|
elif weight_dtype == "fp8_e4m3fn_fast":
|
|
model_options["dtype"] = torch.float8_e4m3fn
|
|
model_options["fp8_optimizations"] = True
|
|
elif weight_dtype == "fp8_e5m2":
|
|
model_options["dtype"] = torch.float8_e5m2
|
|
|
|
unet_path = folder_paths.get_full_path_or_raise("diffusion_models", unet_name)
|
|
model = comfy.sd.load_diffusion_model(unet_path, model_options=model_options)
|
|
return (model,)
|
|
|
|
class CLIPLoader:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "clip_name": (folder_paths.get_filename_list("text_encoders"), ),
|
|
"type": (["stable_diffusion", "stable_cascade", "sd3", "stable_audio", "mochi", "ltxv", "pixart", "cosmos", "lumina2", "wan", "hidream", "chroma", "ace", "omnigen2", "qwen_image"], ),
|
|
},
|
|
"optional": {
|
|
"device": (["default", "cpu"], {"advanced": True}),
|
|
}}
|
|
RETURN_TYPES = ("CLIP",)
|
|
FUNCTION = "load_clip"
|
|
|
|
CATEGORY = "advanced/loaders"
|
|
|
|
DESCRIPTION = "[Recipes]\n\nstable_diffusion: clip-l\nstable_cascade: clip-g\nsd3: t5 xxl/ clip-g / clip-l\nstable_audio: t5 base\nmochi: t5 xxl\ncosmos: old t5 xxl\nlumina2: gemma 2 2B\nwan: umt5 xxl\n hidream: llama-3.1 (Recommend) or t5\nomnigen2: qwen vl 2.5 3B"
|
|
|
|
def load_clip(self, clip_name, type="stable_diffusion", device="default"):
|
|
clip_type = getattr(comfy.sd.CLIPType, type.upper(), comfy.sd.CLIPType.STABLE_DIFFUSION)
|
|
|
|
model_options = {}
|
|
if device == "cpu":
|
|
model_options["load_device"] = model_options["offload_device"] = torch.device("cpu")
|
|
|
|
clip_path = folder_paths.get_full_path_or_raise("text_encoders", clip_name)
|
|
clip = comfy.sd.load_clip(ckpt_paths=[clip_path], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type, model_options=model_options)
|
|
return (clip,)
|
|
|
|
class DualCLIPLoader:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "clip_name1": (folder_paths.get_filename_list("text_encoders"), ),
|
|
"clip_name2": (folder_paths.get_filename_list("text_encoders"), ),
|
|
"type": (["sdxl", "sd3", "flux", "hunyuan_video", "hidream"], ),
|
|
},
|
|
"optional": {
|
|
"device": (["default", "cpu"], {"advanced": True}),
|
|
}}
|
|
RETURN_TYPES = ("CLIP",)
|
|
FUNCTION = "load_clip"
|
|
|
|
CATEGORY = "advanced/loaders"
|
|
|
|
DESCRIPTION = "[Recipes]\n\nsdxl: clip-l, clip-g\nsd3: clip-l, clip-g / clip-l, t5 / clip-g, t5\nflux: clip-l, t5\nhidream: at least one of t5 or llama, recommended t5 and llama"
|
|
|
|
def load_clip(self, clip_name1, clip_name2, type, device="default"):
|
|
clip_type = getattr(comfy.sd.CLIPType, type.upper(), comfy.sd.CLIPType.STABLE_DIFFUSION)
|
|
|
|
clip_path1 = folder_paths.get_full_path_or_raise("text_encoders", clip_name1)
|
|
clip_path2 = folder_paths.get_full_path_or_raise("text_encoders", clip_name2)
|
|
|
|
model_options = {}
|
|
if device == "cpu":
|
|
model_options["load_device"] = model_options["offload_device"] = torch.device("cpu")
|
|
|
|
clip = comfy.sd.load_clip(ckpt_paths=[clip_path1, clip_path2], embedding_directory=folder_paths.get_folder_paths("embeddings"), clip_type=clip_type, model_options=model_options)
|
|
return (clip,)
|
|
|
|
class CLIPVisionLoader:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "clip_name": (folder_paths.get_filename_list("clip_vision"), ),
|
|
}}
|
|
RETURN_TYPES = ("CLIP_VISION",)
|
|
FUNCTION = "load_clip"
|
|
|
|
CATEGORY = "loaders"
|
|
|
|
def load_clip(self, clip_name):
|
|
clip_path = folder_paths.get_full_path_or_raise("clip_vision", clip_name)
|
|
clip_vision = comfy.clip_vision.load(clip_path)
|
|
if clip_vision is None:
|
|
raise RuntimeError("ERROR: clip vision file is invalid and does not contain a valid vision model.")
|
|
return (clip_vision,)
|
|
|
|
class CLIPVisionEncode:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "clip_vision": ("CLIP_VISION",),
|
|
"image": ("IMAGE",),
|
|
"crop": (["center", "none"],)
|
|
}}
|
|
RETURN_TYPES = ("CLIP_VISION_OUTPUT",)
|
|
FUNCTION = "encode"
|
|
|
|
CATEGORY = "conditioning"
|
|
|
|
def encode(self, clip_vision, image, crop):
|
|
crop_image = True
|
|
if crop != "center":
|
|
crop_image = False
|
|
output = clip_vision.encode_image(image, crop=crop_image)
|
|
return (output,)
|
|
|
|
class StyleModelLoader:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "style_model_name": (folder_paths.get_filename_list("style_models"), )}}
|
|
|
|
RETURN_TYPES = ("STYLE_MODEL",)
|
|
FUNCTION = "load_style_model"
|
|
|
|
CATEGORY = "loaders"
|
|
|
|
def load_style_model(self, style_model_name):
|
|
style_model_path = folder_paths.get_full_path_or_raise("style_models", style_model_name)
|
|
style_model = comfy.sd.load_style_model(style_model_path)
|
|
return (style_model,)
|
|
|
|
|
|
class StyleModelApply:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"conditioning": ("CONDITIONING", ),
|
|
"style_model": ("STYLE_MODEL", ),
|
|
"clip_vision_output": ("CLIP_VISION_OUTPUT", ),
|
|
"strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.001}),
|
|
"strength_type": (["multiply", "attn_bias"], ),
|
|
}}
|
|
RETURN_TYPES = ("CONDITIONING",)
|
|
FUNCTION = "apply_stylemodel"
|
|
|
|
CATEGORY = "conditioning/style_model"
|
|
|
|
def apply_stylemodel(self, conditioning, style_model, clip_vision_output, strength, strength_type):
|
|
cond = style_model.get_cond(clip_vision_output).flatten(start_dim=0, end_dim=1).unsqueeze(dim=0)
|
|
if strength_type == "multiply":
|
|
cond *= strength
|
|
|
|
n = cond.shape[1]
|
|
c_out = []
|
|
for t in conditioning:
|
|
(txt, keys) = t
|
|
keys = keys.copy()
|
|
# even if the strength is 1.0 (i.e, no change), if there's already a mask, we have to add to it
|
|
if "attention_mask" in keys or (strength_type == "attn_bias" and strength != 1.0):
|
|
# math.log raises an error if the argument is zero
|
|
# torch.log returns -inf, which is what we want
|
|
attn_bias = torch.log(torch.Tensor([strength if strength_type == "attn_bias" else 1.0]))
|
|
# get the size of the mask image
|
|
mask_ref_size = keys.get("attention_mask_img_shape", (1, 1))
|
|
n_ref = mask_ref_size[0] * mask_ref_size[1]
|
|
n_txt = txt.shape[1]
|
|
# grab the existing mask
|
|
mask = keys.get("attention_mask", None)
|
|
# create a default mask if it doesn't exist
|
|
if mask is None:
|
|
mask = torch.zeros((txt.shape[0], n_txt + n_ref, n_txt + n_ref), dtype=torch.float16)
|
|
# convert the mask dtype, because it might be boolean
|
|
# we want it to be interpreted as a bias
|
|
if mask.dtype == torch.bool:
|
|
# log(True) = log(1) = 0
|
|
# log(False) = log(0) = -inf
|
|
mask = torch.log(mask.to(dtype=torch.float16))
|
|
# now we make the mask bigger to add space for our new tokens
|
|
new_mask = torch.zeros((txt.shape[0], n_txt + n + n_ref, n_txt + n + n_ref), dtype=torch.float16)
|
|
# copy over the old mask, in quandrants
|
|
new_mask[:, :n_txt, :n_txt] = mask[:, :n_txt, :n_txt]
|
|
new_mask[:, :n_txt, n_txt+n:] = mask[:, :n_txt, n_txt:]
|
|
new_mask[:, n_txt+n:, :n_txt] = mask[:, n_txt:, :n_txt]
|
|
new_mask[:, n_txt+n:, n_txt+n:] = mask[:, n_txt:, n_txt:]
|
|
# now fill in the attention bias to our redux tokens
|
|
new_mask[:, :n_txt, n_txt:n_txt+n] = attn_bias
|
|
new_mask[:, n_txt+n:, n_txt:n_txt+n] = attn_bias
|
|
keys["attention_mask"] = new_mask.to(txt.device)
|
|
keys["attention_mask_img_shape"] = mask_ref_size
|
|
|
|
c_out.append([torch.cat((txt, cond), dim=1), keys])
|
|
|
|
return (c_out,)
|
|
|
|
class unCLIPConditioning:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"conditioning": ("CONDITIONING", ),
|
|
"clip_vision_output": ("CLIP_VISION_OUTPUT", ),
|
|
"strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
|
|
"noise_augmentation": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01}),
|
|
}}
|
|
RETURN_TYPES = ("CONDITIONING",)
|
|
FUNCTION = "apply_adm"
|
|
|
|
CATEGORY = "conditioning"
|
|
|
|
def apply_adm(self, conditioning, clip_vision_output, strength, noise_augmentation):
|
|
if strength == 0:
|
|
return (conditioning, )
|
|
|
|
c = node_helpers.conditioning_set_values(conditioning, {"unclip_conditioning": [{"clip_vision_output": clip_vision_output, "strength": strength, "noise_augmentation": noise_augmentation}]}, append=True)
|
|
return (c, )
|
|
|
|
class GLIGENLoader:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "gligen_name": (folder_paths.get_filename_list("gligen"), )}}
|
|
|
|
RETURN_TYPES = ("GLIGEN",)
|
|
FUNCTION = "load_gligen"
|
|
|
|
CATEGORY = "loaders"
|
|
|
|
def load_gligen(self, gligen_name):
|
|
gligen_path = folder_paths.get_full_path_or_raise("gligen", gligen_name)
|
|
gligen = comfy.sd.load_gligen(gligen_path)
|
|
return (gligen,)
|
|
|
|
class GLIGENTextBoxApply:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {"conditioning_to": ("CONDITIONING", ),
|
|
"clip": ("CLIP", ),
|
|
"gligen_textbox_model": ("GLIGEN", ),
|
|
"text": ("STRING", {"multiline": True, "dynamicPrompts": True}),
|
|
"width": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
|
|
"height": ("INT", {"default": 64, "min": 8, "max": MAX_RESOLUTION, "step": 8}),
|
|
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
|
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
|
}}
|
|
RETURN_TYPES = ("CONDITIONING",)
|
|
FUNCTION = "append"
|
|
|
|
CATEGORY = "conditioning/gligen"
|
|
|
|
def append(self, conditioning_to, clip, gligen_textbox_model, text, width, height, x, y):
|
|
c = []
|
|
cond, cond_pooled = clip.encode_from_tokens(clip.tokenize(text), return_pooled="unprojected")
|
|
for t in conditioning_to:
|
|
n = [t[0], t[1].copy()]
|
|
position_params = [(cond_pooled, height // 8, width // 8, y // 8, x // 8)]
|
|
prev = []
|
|
if "gligen" in n[1]:
|
|
prev = n[1]['gligen'][2]
|
|
|
|
n[1]['gligen'] = ("position", gligen_textbox_model, prev + position_params)
|
|
c.append(n)
|
|
return (c, )
|
|
|
|
class EmptyLatentImage:
|
|
def __init__(self):
|
|
self.device = comfy.model_management.intermediate_device()
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"width": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8, "tooltip": "The width of the latent images in pixels."}),
|
|
"height": ("INT", {"default": 512, "min": 16, "max": MAX_RESOLUTION, "step": 8, "tooltip": "The height of the latent images in pixels."}),
|
|
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096, "tooltip": "The number of latent images in the batch."})
|
|
}
|
|
}
|
|
RETURN_TYPES = ("LATENT",)
|
|
OUTPUT_TOOLTIPS = ("The empty latent image batch.",)
|
|
FUNCTION = "generate"
|
|
|
|
CATEGORY = "latent"
|
|
DESCRIPTION = "Create a new batch of empty latent images to be denoised via sampling."
|
|
|
|
def generate(self, width, height, batch_size=1):
|
|
latent = torch.zeros([batch_size, 4, height // 8, width // 8], device=self.device)
|
|
return ({"samples":latent}, )
|
|
|
|
|
|
class LatentFromBatch:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "samples": ("LATENT",),
|
|
"batch_index": ("INT", {"default": 0, "min": 0, "max": 63}),
|
|
"length": ("INT", {"default": 1, "min": 1, "max": 64}),
|
|
}}
|
|
RETURN_TYPES = ("LATENT",)
|
|
FUNCTION = "frombatch"
|
|
|
|
CATEGORY = "latent/batch"
|
|
|
|
def frombatch(self, samples, batch_index, length):
|
|
s = samples.copy()
|
|
s_in = samples["samples"]
|
|
batch_index = min(s_in.shape[0] - 1, batch_index)
|
|
length = min(s_in.shape[0] - batch_index, length)
|
|
s["samples"] = s_in[batch_index:batch_index + length].clone()
|
|
if "noise_mask" in samples:
|
|
masks = samples["noise_mask"]
|
|
if masks.shape[0] == 1:
|
|
s["noise_mask"] = masks.clone()
|
|
else:
|
|
if masks.shape[0] < s_in.shape[0]:
|
|
masks = masks.repeat(math.ceil(s_in.shape[0] / masks.shape[0]), 1, 1, 1)[:s_in.shape[0]]
|
|
s["noise_mask"] = masks[batch_index:batch_index + length].clone()
|
|
if "batch_index" not in s:
|
|
s["batch_index"] = [x for x in range(batch_index, batch_index+length)]
|
|
else:
|
|
s["batch_index"] = samples["batch_index"][batch_index:batch_index + length]
|
|
return (s,)
|
|
|
|
class RepeatLatentBatch:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "samples": ("LATENT",),
|
|
"amount": ("INT", {"default": 1, "min": 1, "max": 64}),
|
|
}}
|
|
RETURN_TYPES = ("LATENT",)
|
|
FUNCTION = "repeat"
|
|
|
|
CATEGORY = "latent/batch"
|
|
|
|
def repeat(self, samples, amount):
|
|
s = samples.copy()
|
|
s_in = samples["samples"]
|
|
|
|
s["samples"] = s_in.repeat((amount,) + ((1,) * (s_in.ndim - 1)))
|
|
if "noise_mask" in samples and samples["noise_mask"].shape[0] > 1:
|
|
masks = samples["noise_mask"]
|
|
if masks.shape[0] < s_in.shape[0]:
|
|
masks = masks.repeat((math.ceil(s_in.shape[0] / masks.shape[0]),) + ((1,) * (masks.ndim - 1)))[:s_in.shape[0]]
|
|
s["noise_mask"] = samples["noise_mask"].repeat((amount,) + ((1,) * (samples["noise_mask"].ndim - 1)))
|
|
if "batch_index" in s:
|
|
offset = max(s["batch_index"]) - min(s["batch_index"]) + 1
|
|
s["batch_index"] = s["batch_index"] + [x + (i * offset) for i in range(1, amount) for x in s["batch_index"]]
|
|
return (s,)
|
|
|
|
class LatentUpscale:
|
|
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
|
|
crop_methods = ["disabled", "center"]
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
|
|
"width": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
|
"height": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
|
"crop": (s.crop_methods,)}}
|
|
RETURN_TYPES = ("LATENT",)
|
|
FUNCTION = "upscale"
|
|
|
|
CATEGORY = "latent"
|
|
|
|
def upscale(self, samples, upscale_method, width, height, crop):
|
|
if width == 0 and height == 0:
|
|
s = samples
|
|
else:
|
|
s = samples.copy()
|
|
|
|
if width == 0:
|
|
height = max(64, height)
|
|
width = max(64, round(samples["samples"].shape[-1] * height / samples["samples"].shape[-2]))
|
|
elif height == 0:
|
|
width = max(64, width)
|
|
height = max(64, round(samples["samples"].shape[-2] * width / samples["samples"].shape[-1]))
|
|
else:
|
|
width = max(64, width)
|
|
height = max(64, height)
|
|
|
|
s["samples"] = comfy.utils.common_upscale(samples["samples"], width // 8, height // 8, upscale_method, crop)
|
|
return (s,)
|
|
|
|
class LatentUpscaleBy:
|
|
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "bislerp"]
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "samples": ("LATENT",), "upscale_method": (s.upscale_methods,),
|
|
"scale_by": ("FLOAT", {"default": 1.5, "min": 0.01, "max": 8.0, "step": 0.01}),}}
|
|
RETURN_TYPES = ("LATENT",)
|
|
FUNCTION = "upscale"
|
|
|
|
CATEGORY = "latent"
|
|
|
|
def upscale(self, samples, upscale_method, scale_by):
|
|
s = samples.copy()
|
|
width = round(samples["samples"].shape[-1] * scale_by)
|
|
height = round(samples["samples"].shape[-2] * scale_by)
|
|
s["samples"] = comfy.utils.common_upscale(samples["samples"], width, height, upscale_method, "disabled")
|
|
return (s,)
|
|
|
|
class LatentRotate:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "samples": ("LATENT",),
|
|
"rotation": (["none", "90 degrees", "180 degrees", "270 degrees"],),
|
|
}}
|
|
RETURN_TYPES = ("LATENT",)
|
|
FUNCTION = "rotate"
|
|
|
|
CATEGORY = "latent/transform"
|
|
|
|
def rotate(self, samples, rotation):
|
|
s = samples.copy()
|
|
rotate_by = 0
|
|
if rotation.startswith("90"):
|
|
rotate_by = 1
|
|
elif rotation.startswith("180"):
|
|
rotate_by = 2
|
|
elif rotation.startswith("270"):
|
|
rotate_by = 3
|
|
|
|
s["samples"] = torch.rot90(samples["samples"], k=rotate_by, dims=[3, 2])
|
|
return (s,)
|
|
|
|
class LatentFlip:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "samples": ("LATENT",),
|
|
"flip_method": (["x-axis: vertically", "y-axis: horizontally"],),
|
|
}}
|
|
RETURN_TYPES = ("LATENT",)
|
|
FUNCTION = "flip"
|
|
|
|
CATEGORY = "latent/transform"
|
|
|
|
def flip(self, samples, flip_method):
|
|
s = samples.copy()
|
|
if flip_method.startswith("x"):
|
|
s["samples"] = torch.flip(samples["samples"], dims=[2])
|
|
elif flip_method.startswith("y"):
|
|
s["samples"] = torch.flip(samples["samples"], dims=[3])
|
|
|
|
return (s,)
|
|
|
|
class LatentComposite:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "samples_to": ("LATENT",),
|
|
"samples_from": ("LATENT",),
|
|
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
|
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
|
"feather": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
|
}}
|
|
RETURN_TYPES = ("LATENT",)
|
|
FUNCTION = "composite"
|
|
|
|
CATEGORY = "latent"
|
|
|
|
def composite(self, samples_to, samples_from, x, y, composite_method="normal", feather=0):
|
|
x = x // 8
|
|
y = y // 8
|
|
feather = feather // 8
|
|
samples_out = samples_to.copy()
|
|
s = samples_to["samples"].clone()
|
|
samples_to = samples_to["samples"]
|
|
samples_from = samples_from["samples"]
|
|
if feather == 0:
|
|
s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
|
|
else:
|
|
samples_from = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x]
|
|
mask = torch.ones_like(samples_from)
|
|
for t in range(feather):
|
|
if y != 0:
|
|
mask[:,:,t:1+t,:] *= ((1.0/feather) * (t + 1))
|
|
|
|
if y + samples_from.shape[2] < samples_to.shape[2]:
|
|
mask[:,:,mask.shape[2] -1 -t: mask.shape[2]-t,:] *= ((1.0/feather) * (t + 1))
|
|
if x != 0:
|
|
mask[:,:,:,t:1+t] *= ((1.0/feather) * (t + 1))
|
|
if x + samples_from.shape[3] < samples_to.shape[3]:
|
|
mask[:,:,:,mask.shape[3]- 1 - t: mask.shape[3]- t] *= ((1.0/feather) * (t + 1))
|
|
rev_mask = torch.ones_like(mask) - mask
|
|
s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] = samples_from[:,:,:samples_to.shape[2] - y, :samples_to.shape[3] - x] * mask + s[:,:,y:y+samples_from.shape[2],x:x+samples_from.shape[3]] * rev_mask
|
|
samples_out["samples"] = s
|
|
return (samples_out,)
|
|
|
|
class LatentBlend:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": {
|
|
"samples1": ("LATENT",),
|
|
"samples2": ("LATENT",),
|
|
"blend_factor": ("FLOAT", {
|
|
"default": 0.5,
|
|
"min": 0,
|
|
"max": 1,
|
|
"step": 0.01
|
|
}),
|
|
}}
|
|
|
|
RETURN_TYPES = ("LATENT",)
|
|
FUNCTION = "blend"
|
|
|
|
CATEGORY = "_for_testing"
|
|
|
|
def blend(self, samples1, samples2, blend_factor:float, blend_mode: str="normal"):
|
|
|
|
samples_out = samples1.copy()
|
|
samples1 = samples1["samples"]
|
|
samples2 = samples2["samples"]
|
|
|
|
if samples1.shape != samples2.shape:
|
|
samples2.permute(0, 3, 1, 2)
|
|
samples2 = comfy.utils.common_upscale(samples2, samples1.shape[3], samples1.shape[2], 'bicubic', crop='center')
|
|
samples2.permute(0, 2, 3, 1)
|
|
|
|
samples_blended = self.blend_mode(samples1, samples2, blend_mode)
|
|
samples_blended = samples1 * blend_factor + samples_blended * (1 - blend_factor)
|
|
samples_out["samples"] = samples_blended
|
|
return (samples_out,)
|
|
|
|
def blend_mode(self, img1, img2, mode):
|
|
if mode == "normal":
|
|
return img2
|
|
else:
|
|
raise ValueError(f"Unsupported blend mode: {mode}")
|
|
|
|
class LatentCrop:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "samples": ("LATENT",),
|
|
"width": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
|
|
"height": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 8}),
|
|
"x": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
|
"y": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
|
}}
|
|
RETURN_TYPES = ("LATENT",)
|
|
FUNCTION = "crop"
|
|
|
|
CATEGORY = "latent/transform"
|
|
|
|
def crop(self, samples, width, height, x, y):
|
|
s = samples.copy()
|
|
samples = samples['samples']
|
|
x = x // 8
|
|
y = y // 8
|
|
|
|
#enfonce minimum size of 64
|
|
if x > (samples.shape[3] - 8):
|
|
x = samples.shape[3] - 8
|
|
if y > (samples.shape[2] - 8):
|
|
y = samples.shape[2] - 8
|
|
|
|
new_height = height // 8
|
|
new_width = width // 8
|
|
to_x = new_width + x
|
|
to_y = new_height + y
|
|
s['samples'] = samples[:,:,y:to_y, x:to_x]
|
|
return (s,)
|
|
|
|
class SetLatentNoiseMask:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "samples": ("LATENT",),
|
|
"mask": ("MASK",),
|
|
}}
|
|
RETURN_TYPES = ("LATENT",)
|
|
FUNCTION = "set_mask"
|
|
|
|
CATEGORY = "latent/inpaint"
|
|
|
|
def set_mask(self, samples, mask):
|
|
s = samples.copy()
|
|
s["noise_mask"] = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1]))
|
|
return (s,)
|
|
|
|
def common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent, denoise=1.0, disable_noise=False, start_step=None, last_step=None, force_full_denoise=False):
|
|
latent_image = latent["samples"]
|
|
latent_image = comfy.sample.fix_empty_latent_channels(model, latent_image)
|
|
|
|
if disable_noise:
|
|
noise = torch.zeros(latent_image.size(), dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
|
|
else:
|
|
batch_inds = latent["batch_index"] if "batch_index" in latent else None
|
|
noise = comfy.sample.prepare_noise(latent_image, seed, batch_inds)
|
|
|
|
noise_mask = None
|
|
if "noise_mask" in latent:
|
|
noise_mask = latent["noise_mask"]
|
|
|
|
callback = latent_preview.prepare_callback(model, steps)
|
|
disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED
|
|
samples = comfy.sample.sample(model, noise, steps, cfg, sampler_name, scheduler, positive, negative, latent_image,
|
|
denoise=denoise, disable_noise=disable_noise, start_step=start_step, last_step=last_step,
|
|
force_full_denoise=force_full_denoise, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=seed)
|
|
out = latent.copy()
|
|
out["samples"] = samples
|
|
return (out, )
|
|
|
|
class KSampler:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"model": ("MODEL", {"tooltip": "The model used for denoising the input latent."}),
|
|
"seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "control_after_generate": True, "tooltip": "The random seed used for creating the noise."}),
|
|
"steps": ("INT", {"default": 20, "min": 1, "max": 10000, "tooltip": "The number of steps used in the denoising process."}),
|
|
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01, "tooltip": "The Classifier-Free Guidance scale balances creativity and adherence to the prompt. Higher values result in images more closely matching the prompt however too high values will negatively impact quality."}),
|
|
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, {"tooltip": "The algorithm used when sampling, this can affect the quality, speed, and style of the generated output."}),
|
|
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, {"tooltip": "The scheduler controls how noise is gradually removed to form the image."}),
|
|
"positive": ("CONDITIONING", {"tooltip": "The conditioning describing the attributes you want to include in the image."}),
|
|
"negative": ("CONDITIONING", {"tooltip": "The conditioning describing the attributes you want to exclude from the image."}),
|
|
"latent_image": ("LATENT", {"tooltip": "The latent image to denoise."}),
|
|
"denoise": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "The amount of denoising applied, lower values will maintain the structure of the initial image allowing for image to image sampling."}),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("LATENT",)
|
|
OUTPUT_TOOLTIPS = ("The denoised latent.",)
|
|
FUNCTION = "sample"
|
|
|
|
CATEGORY = "sampling"
|
|
DESCRIPTION = "Uses the provided model, positive and negative conditioning to denoise the latent image."
|
|
|
|
def sample(self, model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=1.0):
|
|
return common_ksampler(model, seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise)
|
|
|
|
class KSamplerAdvanced:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required":
|
|
{"model": ("MODEL",),
|
|
"add_noise": (["enable", "disable"], ),
|
|
"noise_seed": ("INT", {"default": 0, "min": 0, "max": 0xffffffffffffffff, "control_after_generate": True}),
|
|
"steps": ("INT", {"default": 20, "min": 1, "max": 10000}),
|
|
"cfg": ("FLOAT", {"default": 8.0, "min": 0.0, "max": 100.0, "step":0.1, "round": 0.01}),
|
|
"sampler_name": (comfy.samplers.KSampler.SAMPLERS, ),
|
|
"scheduler": (comfy.samplers.KSampler.SCHEDULERS, ),
|
|
"positive": ("CONDITIONING", ),
|
|
"negative": ("CONDITIONING", ),
|
|
"latent_image": ("LATENT", ),
|
|
"start_at_step": ("INT", {"default": 0, "min": 0, "max": 10000}),
|
|
"end_at_step": ("INT", {"default": 10000, "min": 0, "max": 10000}),
|
|
"return_with_leftover_noise": (["disable", "enable"], ),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("LATENT",)
|
|
FUNCTION = "sample"
|
|
|
|
CATEGORY = "sampling"
|
|
|
|
def sample(self, model, add_noise, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, start_at_step, end_at_step, return_with_leftover_noise, denoise=1.0):
|
|
force_full_denoise = True
|
|
if return_with_leftover_noise == "enable":
|
|
force_full_denoise = False
|
|
disable_noise = False
|
|
if add_noise == "disable":
|
|
disable_noise = True
|
|
return common_ksampler(model, noise_seed, steps, cfg, sampler_name, scheduler, positive, negative, latent_image, denoise=denoise, disable_noise=disable_noise, start_step=start_at_step, last_step=end_at_step, force_full_denoise=force_full_denoise)
|
|
|
|
class SaveImage:
|
|
def __init__(self):
|
|
self.output_dir = folder_paths.get_output_directory()
|
|
self.type = "output"
|
|
self.prefix_append = ""
|
|
self.compress_level = 4
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"images": ("IMAGE", {"tooltip": "The images to save."}),
|
|
"filename_prefix": ("STRING", {"default": "ComfyUI", "tooltip": "The prefix for the file to save. This may include formatting information such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes."})
|
|
},
|
|
"hidden": {
|
|
"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ()
|
|
FUNCTION = "save_images"
|
|
|
|
OUTPUT_NODE = True
|
|
|
|
CATEGORY = "image"
|
|
DESCRIPTION = "Saves the input images to your ComfyUI output directory."
|
|
|
|
def save_images(self, images, filename_prefix="ComfyUI", prompt=None, extra_pnginfo=None):
|
|
filename_prefix += self.prefix_append
|
|
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir, images[0].shape[1], images[0].shape[0])
|
|
results = list()
|
|
for (batch_number, image) in enumerate(images):
|
|
i = 255. * image.cpu().numpy()
|
|
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
|
|
metadata = None
|
|
if not args.disable_metadata:
|
|
metadata = PngInfo()
|
|
if prompt is not None:
|
|
metadata.add_text("prompt", json.dumps(prompt))
|
|
if extra_pnginfo is not None:
|
|
for x in extra_pnginfo:
|
|
metadata.add_text(x, json.dumps(extra_pnginfo[x]))
|
|
|
|
filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
|
|
file = f"{filename_with_batch_num}_{counter:05}_.png"
|
|
img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=self.compress_level)
|
|
results.append({
|
|
"filename": file,
|
|
"subfolder": subfolder,
|
|
"type": self.type
|
|
})
|
|
counter += 1
|
|
|
|
return { "ui": { "images": results } }
|
|
|
|
class PreviewImage(SaveImage):
|
|
def __init__(self):
|
|
self.output_dir = folder_paths.get_temp_directory()
|
|
self.type = "temp"
|
|
self.prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
|
|
self.compress_level = 1
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required":
|
|
{"images": ("IMAGE", ), },
|
|
"hidden": {"prompt": "PROMPT", "extra_pnginfo": "EXTRA_PNGINFO"},
|
|
}
|
|
|
|
class LoadImage:
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
input_dir = folder_paths.get_input_directory()
|
|
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
|
|
files = folder_paths.filter_files_content_types(files, ["image"])
|
|
return {"required":
|
|
{"image": (sorted(files), {"image_upload": True})},
|
|
}
|
|
|
|
CATEGORY = "image"
|
|
|
|
RETURN_TYPES = ("IMAGE", "MASK")
|
|
FUNCTION = "load_image"
|
|
def load_image(self, image):
|
|
image_path = folder_paths.get_annotated_filepath(image)
|
|
|
|
img = node_helpers.pillow(Image.open, image_path)
|
|
|
|
output_images = []
|
|
output_masks = []
|
|
w, h = None, None
|
|
|
|
excluded_formats = ['MPO']
|
|
|
|
for i in ImageSequence.Iterator(img):
|
|
i = node_helpers.pillow(ImageOps.exif_transpose, i)
|
|
|
|
if i.mode == 'I':
|
|
i = i.point(lambda i: i * (1 / 255))
|
|
image = i.convert("RGB")
|
|
|
|
if len(output_images) == 0:
|
|
w = image.size[0]
|
|
h = image.size[1]
|
|
|
|
if image.size[0] != w or image.size[1] != h:
|
|
continue
|
|
|
|
image = np.array(image).astype(np.float32) / 255.0
|
|
image = torch.from_numpy(image)[None,]
|
|
if 'A' in i.getbands():
|
|
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
|
|
mask = 1. - torch.from_numpy(mask)
|
|
elif i.mode == 'P' and 'transparency' in i.info:
|
|
mask = np.array(i.convert('RGBA').getchannel('A')).astype(np.float32) / 255.0
|
|
mask = 1. - torch.from_numpy(mask)
|
|
else:
|
|
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
|
|
output_images.append(image)
|
|
output_masks.append(mask.unsqueeze(0))
|
|
|
|
if len(output_images) > 1 and img.format not in excluded_formats:
|
|
output_image = torch.cat(output_images, dim=0)
|
|
output_mask = torch.cat(output_masks, dim=0)
|
|
else:
|
|
output_image = output_images[0]
|
|
output_mask = output_masks[0]
|
|
|
|
return (output_image, output_mask)
|
|
|
|
@classmethod
|
|
def IS_CHANGED(s, image):
|
|
image_path = folder_paths.get_annotated_filepath(image)
|
|
m = hashlib.sha256()
|
|
with open(image_path, 'rb') as f:
|
|
m.update(f.read())
|
|
return m.digest().hex()
|
|
|
|
@classmethod
|
|
def VALIDATE_INPUTS(s, image):
|
|
if not folder_paths.exists_annotated_filepath(image):
|
|
return "Invalid image file: {}".format(image)
|
|
|
|
return True
|
|
|
|
class LoadImageMask:
|
|
_color_channels = ["alpha", "red", "green", "blue"]
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
input_dir = folder_paths.get_input_directory()
|
|
files = [f for f in os.listdir(input_dir) if os.path.isfile(os.path.join(input_dir, f))]
|
|
return {"required":
|
|
{"image": (sorted(files), {"image_upload": True}),
|
|
"channel": (s._color_channels, ), }
|
|
}
|
|
|
|
CATEGORY = "mask"
|
|
|
|
RETURN_TYPES = ("MASK",)
|
|
FUNCTION = "load_image"
|
|
def load_image(self, image, channel):
|
|
image_path = folder_paths.get_annotated_filepath(image)
|
|
i = node_helpers.pillow(Image.open, image_path)
|
|
i = node_helpers.pillow(ImageOps.exif_transpose, i)
|
|
if i.getbands() != ("R", "G", "B", "A"):
|
|
if i.mode == 'I':
|
|
i = i.point(lambda i: i * (1 / 255))
|
|
i = i.convert("RGBA")
|
|
mask = None
|
|
c = channel[0].upper()
|
|
if c in i.getbands():
|
|
mask = np.array(i.getchannel(c)).astype(np.float32) / 255.0
|
|
mask = torch.from_numpy(mask)
|
|
if c == 'A':
|
|
mask = 1. - mask
|
|
else:
|
|
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
|
|
return (mask.unsqueeze(0),)
|
|
|
|
@classmethod
|
|
def IS_CHANGED(s, image, channel):
|
|
image_path = folder_paths.get_annotated_filepath(image)
|
|
m = hashlib.sha256()
|
|
with open(image_path, 'rb') as f:
|
|
m.update(f.read())
|
|
return m.digest().hex()
|
|
|
|
@classmethod
|
|
def VALIDATE_INPUTS(s, image):
|
|
if not folder_paths.exists_annotated_filepath(image):
|
|
return "Invalid image file: {}".format(image)
|
|
|
|
return True
|
|
|
|
|
|
class LoadImageOutput(LoadImage):
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"image": ("COMBO", {
|
|
"image_upload": True,
|
|
"image_folder": "output",
|
|
"remote": {
|
|
"route": "/internal/files/output",
|
|
"refresh_button": True,
|
|
"control_after_refresh": "first",
|
|
},
|
|
}),
|
|
}
|
|
}
|
|
|
|
DESCRIPTION = "Load an image from the output folder. When the refresh button is clicked, the node will update the image list and automatically select the first image, allowing for easy iteration."
|
|
EXPERIMENTAL = True
|
|
FUNCTION = "load_image"
|
|
|
|
|
|
class ImageScale:
|
|
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
|
|
crop_methods = ["disabled", "center"]
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
|
|
"width": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
|
"height": ("INT", {"default": 512, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
|
"crop": (s.crop_methods,)}}
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "upscale"
|
|
|
|
CATEGORY = "image/upscaling"
|
|
|
|
def upscale(self, image, upscale_method, width, height, crop):
|
|
if width == 0 and height == 0:
|
|
s = image
|
|
else:
|
|
samples = image.movedim(-1,1)
|
|
|
|
if width == 0:
|
|
width = max(1, round(samples.shape[3] * height / samples.shape[2]))
|
|
elif height == 0:
|
|
height = max(1, round(samples.shape[2] * width / samples.shape[3]))
|
|
|
|
s = comfy.utils.common_upscale(samples, width, height, upscale_method, crop)
|
|
s = s.movedim(1,-1)
|
|
return (s,)
|
|
|
|
class ImageScaleBy:
|
|
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "image": ("IMAGE",), "upscale_method": (s.upscale_methods,),
|
|
"scale_by": ("FLOAT", {"default": 1.0, "min": 0.01, "max": 8.0, "step": 0.01}),}}
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "upscale"
|
|
|
|
CATEGORY = "image/upscaling"
|
|
|
|
def upscale(self, image, upscale_method, scale_by):
|
|
samples = image.movedim(-1,1)
|
|
width = round(samples.shape[3] * scale_by)
|
|
height = round(samples.shape[2] * scale_by)
|
|
s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled")
|
|
s = s.movedim(1,-1)
|
|
return (s,)
|
|
|
|
class ImageInvert:
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "image": ("IMAGE",)}}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "invert"
|
|
|
|
CATEGORY = "image"
|
|
|
|
def invert(self, image):
|
|
s = 1.0 - image
|
|
return (s,)
|
|
|
|
class ImageBatch:
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "image1": ("IMAGE",), "image2": ("IMAGE",)}}
|
|
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "batch"
|
|
|
|
CATEGORY = "image"
|
|
|
|
def batch(self, image1, image2):
|
|
if image1.shape[1:] != image2.shape[1:]:
|
|
image2 = comfy.utils.common_upscale(image2.movedim(-1,1), image1.shape[2], image1.shape[1], "bilinear", "center").movedim(1,-1)
|
|
s = torch.cat((image1, image2), dim=0)
|
|
return (s,)
|
|
|
|
class EmptyImage:
|
|
def __init__(self, device="cpu"):
|
|
self.device = device
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {"required": { "width": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
|
|
"height": ("INT", {"default": 512, "min": 1, "max": MAX_RESOLUTION, "step": 1}),
|
|
"batch_size": ("INT", {"default": 1, "min": 1, "max": 4096}),
|
|
"color": ("INT", {"default": 0, "min": 0, "max": 0xFFFFFF, "step": 1, "display": "color"}),
|
|
}}
|
|
RETURN_TYPES = ("IMAGE",)
|
|
FUNCTION = "generate"
|
|
|
|
CATEGORY = "image"
|
|
|
|
def generate(self, width, height, batch_size=1, color=0):
|
|
r = torch.full([batch_size, height, width, 1], ((color >> 16) & 0xFF) / 0xFF)
|
|
g = torch.full([batch_size, height, width, 1], ((color >> 8) & 0xFF) / 0xFF)
|
|
b = torch.full([batch_size, height, width, 1], ((color) & 0xFF) / 0xFF)
|
|
return (torch.cat((r, g, b), dim=-1), )
|
|
|
|
class ImagePadForOutpaint:
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(s):
|
|
return {
|
|
"required": {
|
|
"image": ("IMAGE",),
|
|
"left": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
|
"top": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
|
"right": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
|
"bottom": ("INT", {"default": 0, "min": 0, "max": MAX_RESOLUTION, "step": 8}),
|
|
"feathering": ("INT", {"default": 40, "min": 0, "max": MAX_RESOLUTION, "step": 1}),
|
|
}
|
|
}
|
|
|
|
RETURN_TYPES = ("IMAGE", "MASK")
|
|
FUNCTION = "expand_image"
|
|
|
|
CATEGORY = "image"
|
|
|
|
def expand_image(self, image, left, top, right, bottom, feathering):
|
|
d1, d2, d3, d4 = image.size()
|
|
|
|
new_image = torch.ones(
|
|
(d1, d2 + top + bottom, d3 + left + right, d4),
|
|
dtype=torch.float32,
|
|
) * 0.5
|
|
|
|
new_image[:, top:top + d2, left:left + d3, :] = image
|
|
|
|
mask = torch.ones(
|
|
(d2 + top + bottom, d3 + left + right),
|
|
dtype=torch.float32,
|
|
)
|
|
|
|
t = torch.zeros(
|
|
(d2, d3),
|
|
dtype=torch.float32
|
|
)
|
|
|
|
if feathering > 0 and feathering * 2 < d2 and feathering * 2 < d3:
|
|
|
|
for i in range(d2):
|
|
for j in range(d3):
|
|
dt = i if top != 0 else d2
|
|
db = d2 - i if bottom != 0 else d2
|
|
|
|
dl = j if left != 0 else d3
|
|
dr = d3 - j if right != 0 else d3
|
|
|
|
d = min(dt, db, dl, dr)
|
|
|
|
if d >= feathering:
|
|
continue
|
|
|
|
v = (feathering - d) / feathering
|
|
|
|
t[i, j] = v * v
|
|
|
|
mask[top:top + d2, left:left + d3] = t
|
|
|
|
return (new_image, mask.unsqueeze(0))
|
|
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
"KSampler": KSampler,
|
|
"CheckpointLoaderSimple": CheckpointLoaderSimple,
|
|
"CLIPTextEncode": CLIPTextEncode,
|
|
"CLIPSetLastLayer": CLIPSetLastLayer,
|
|
"VAEDecode": VAEDecode,
|
|
"VAEEncode": VAEEncode,
|
|
"VAEEncodeForInpaint": VAEEncodeForInpaint,
|
|
"VAELoader": VAELoader,
|
|
"EmptyLatentImage": EmptyLatentImage,
|
|
"LatentUpscale": LatentUpscale,
|
|
"LatentUpscaleBy": LatentUpscaleBy,
|
|
"LatentFromBatch": LatentFromBatch,
|
|
"RepeatLatentBatch": RepeatLatentBatch,
|
|
"SaveImage": SaveImage,
|
|
"PreviewImage": PreviewImage,
|
|
"LoadImage": LoadImage,
|
|
"LoadImageMask": LoadImageMask,
|
|
"LoadImageOutput": LoadImageOutput,
|
|
"ImageScale": ImageScale,
|
|
"ImageScaleBy": ImageScaleBy,
|
|
"ImageInvert": ImageInvert,
|
|
"ImageBatch": ImageBatch,
|
|
"ImagePadForOutpaint": ImagePadForOutpaint,
|
|
"EmptyImage": EmptyImage,
|
|
"ConditioningAverage": ConditioningAverage ,
|
|
"ConditioningCombine": ConditioningCombine,
|
|
"ConditioningConcat": ConditioningConcat,
|
|
"ConditioningSetArea": ConditioningSetArea,
|
|
"ConditioningSetAreaPercentage": ConditioningSetAreaPercentage,
|
|
"ConditioningSetAreaStrength": ConditioningSetAreaStrength,
|
|
"ConditioningSetMask": ConditioningSetMask,
|
|
"KSamplerAdvanced": KSamplerAdvanced,
|
|
"SetLatentNoiseMask": SetLatentNoiseMask,
|
|
"LatentComposite": LatentComposite,
|
|
"LatentBlend": LatentBlend,
|
|
"LatentRotate": LatentRotate,
|
|
"LatentFlip": LatentFlip,
|
|
"LatentCrop": LatentCrop,
|
|
"LoraLoader": LoraLoader,
|
|
"CLIPLoader": CLIPLoader,
|
|
"UNETLoader": UNETLoader,
|
|
"DualCLIPLoader": DualCLIPLoader,
|
|
"CLIPVisionEncode": CLIPVisionEncode,
|
|
"StyleModelApply": StyleModelApply,
|
|
"unCLIPConditioning": unCLIPConditioning,
|
|
"ControlNetApply": ControlNetApply,
|
|
"ControlNetApplyAdvanced": ControlNetApplyAdvanced,
|
|
"ControlNetLoader": ControlNetLoader,
|
|
"DiffControlNetLoader": DiffControlNetLoader,
|
|
"StyleModelLoader": StyleModelLoader,
|
|
"CLIPVisionLoader": CLIPVisionLoader,
|
|
"VAEDecodeTiled": VAEDecodeTiled,
|
|
"VAEEncodeTiled": VAEEncodeTiled,
|
|
"unCLIPCheckpointLoader": unCLIPCheckpointLoader,
|
|
"GLIGENLoader": GLIGENLoader,
|
|
"GLIGENTextBoxApply": GLIGENTextBoxApply,
|
|
"InpaintModelConditioning": InpaintModelConditioning,
|
|
|
|
"CheckpointLoader": CheckpointLoader,
|
|
"DiffusersLoader": DiffusersLoader,
|
|
|
|
"LoadLatent": LoadLatent,
|
|
"SaveLatent": SaveLatent,
|
|
|
|
"ConditioningZeroOut": ConditioningZeroOut,
|
|
"ConditioningSetTimestepRange": ConditioningSetTimestepRange,
|
|
"LoraLoaderModelOnly": LoraLoaderModelOnly,
|
|
}
|
|
|
|
NODE_DISPLAY_NAME_MAPPINGS = {
|
|
# Sampling
|
|
"KSampler": "KSampler",
|
|
"KSamplerAdvanced": "KSampler (Advanced)",
|
|
# Loaders
|
|
"CheckpointLoader": "Load Checkpoint With Config (DEPRECATED)",
|
|
"CheckpointLoaderSimple": "Load Checkpoint",
|
|
"VAELoader": "Load VAE",
|
|
"LoraLoader": "Load LoRA",
|
|
"CLIPLoader": "Load CLIP",
|
|
"ControlNetLoader": "Load ControlNet Model",
|
|
"DiffControlNetLoader": "Load ControlNet Model (diff)",
|
|
"StyleModelLoader": "Load Style Model",
|
|
"CLIPVisionLoader": "Load CLIP Vision",
|
|
"UpscaleModelLoader": "Load Upscale Model",
|
|
"UNETLoader": "Load Diffusion Model",
|
|
# Conditioning
|
|
"CLIPVisionEncode": "CLIP Vision Encode",
|
|
"StyleModelApply": "Apply Style Model",
|
|
"CLIPTextEncode": "CLIP Text Encode (Prompt)",
|
|
"CLIPSetLastLayer": "CLIP Set Last Layer",
|
|
"ConditioningCombine": "Conditioning (Combine)",
|
|
"ConditioningAverage ": "Conditioning (Average)",
|
|
"ConditioningConcat": "Conditioning (Concat)",
|
|
"ConditioningSetArea": "Conditioning (Set Area)",
|
|
"ConditioningSetAreaPercentage": "Conditioning (Set Area with Percentage)",
|
|
"ConditioningSetMask": "Conditioning (Set Mask)",
|
|
"ControlNetApply": "Apply ControlNet (OLD)",
|
|
"ControlNetApplyAdvanced": "Apply ControlNet",
|
|
# Latent
|
|
"VAEEncodeForInpaint": "VAE Encode (for Inpainting)",
|
|
"SetLatentNoiseMask": "Set Latent Noise Mask",
|
|
"VAEDecode": "VAE Decode",
|
|
"VAEEncode": "VAE Encode",
|
|
"LatentRotate": "Rotate Latent",
|
|
"LatentFlip": "Flip Latent",
|
|
"LatentCrop": "Crop Latent",
|
|
"EmptyLatentImage": "Empty Latent Image",
|
|
"LatentUpscale": "Upscale Latent",
|
|
"LatentUpscaleBy": "Upscale Latent By",
|
|
"LatentComposite": "Latent Composite",
|
|
"LatentBlend": "Latent Blend",
|
|
"LatentFromBatch" : "Latent From Batch",
|
|
"RepeatLatentBatch": "Repeat Latent Batch",
|
|
# Image
|
|
"SaveImage": "Save Image",
|
|
"PreviewImage": "Preview Image",
|
|
"LoadImage": "Load Image",
|
|
"LoadImageMask": "Load Image (as Mask)",
|
|
"LoadImageOutput": "Load Image (from Outputs)",
|
|
"ImageScale": "Upscale Image",
|
|
"ImageScaleBy": "Upscale Image By",
|
|
"ImageUpscaleWithModel": "Upscale Image (using Model)",
|
|
"ImageInvert": "Invert Image",
|
|
"ImagePadForOutpaint": "Pad Image for Outpainting",
|
|
"ImageBatch": "Batch Images",
|
|
"ImageCrop": "Image Crop",
|
|
"ImageStitch": "Image Stitch",
|
|
"ImageBlend": "Image Blend",
|
|
"ImageBlur": "Image Blur",
|
|
"ImageQuantize": "Image Quantize",
|
|
"ImageSharpen": "Image Sharpen",
|
|
"ImageScaleToTotalPixels": "Scale Image to Total Pixels",
|
|
"GetImageSize": "Get Image Size",
|
|
# _for_testing
|
|
"VAEDecodeTiled": "VAE Decode (Tiled)",
|
|
"VAEEncodeTiled": "VAE Encode (Tiled)",
|
|
}
|
|
|
|
EXTENSION_WEB_DIRS = {}
|
|
|
|
# Dictionary of successfully loaded module names and associated directories.
|
|
LOADED_MODULE_DIRS = {}
|
|
|
|
|
|
def get_module_name(module_path: str) -> str:
|
|
"""
|
|
Returns the module name based on the given module path.
|
|
Examples:
|
|
get_module_name("C:/Users/username/ComfyUI/custom_nodes/my_custom_node.py") -> "my_custom_node"
|
|
get_module_name("C:/Users/username/ComfyUI/custom_nodes/my_custom_node") -> "my_custom_node"
|
|
get_module_name("C:/Users/username/ComfyUI/custom_nodes/my_custom_node/") -> "my_custom_node"
|
|
get_module_name("C:/Users/username/ComfyUI/custom_nodes/my_custom_node/__init__.py") -> "my_custom_node"
|
|
get_module_name("C:/Users/username/ComfyUI/custom_nodes/my_custom_node/__init__") -> "my_custom_node"
|
|
get_module_name("C:/Users/username/ComfyUI/custom_nodes/my_custom_node/__init__/") -> "my_custom_node"
|
|
get_module_name("C:/Users/username/ComfyUI/custom_nodes/my_custom_node.disabled") -> "custom_nodes
|
|
Args:
|
|
module_path (str): The path of the module.
|
|
Returns:
|
|
str: The module name.
|
|
"""
|
|
base_path = os.path.basename(module_path)
|
|
if os.path.isfile(module_path):
|
|
base_path = os.path.splitext(base_path)[0]
|
|
return base_path
|
|
|
|
|
|
async def load_custom_node(module_path: str, ignore=set(), module_parent="custom_nodes") -> bool:
|
|
module_name = get_module_name(module_path)
|
|
if os.path.isfile(module_path):
|
|
sp = os.path.splitext(module_path)
|
|
module_name = sp[0]
|
|
sys_module_name = module_name
|
|
elif os.path.isdir(module_path):
|
|
sys_module_name = module_path.replace(".", "_x_")
|
|
|
|
try:
|
|
logging.debug("Trying to load custom node {}".format(module_path))
|
|
if os.path.isfile(module_path):
|
|
module_spec = importlib.util.spec_from_file_location(sys_module_name, module_path)
|
|
module_dir = os.path.split(module_path)[0]
|
|
else:
|
|
module_spec = importlib.util.spec_from_file_location(sys_module_name, os.path.join(module_path, "__init__.py"))
|
|
module_dir = module_path
|
|
|
|
module = importlib.util.module_from_spec(module_spec)
|
|
sys.modules[sys_module_name] = module
|
|
module_spec.loader.exec_module(module)
|
|
|
|
LOADED_MODULE_DIRS[module_name] = os.path.abspath(module_dir)
|
|
|
|
try:
|
|
from comfy_config import config_parser
|
|
|
|
project_config = config_parser.extract_node_configuration(module_path)
|
|
|
|
web_dir_name = project_config.tool_comfy.web
|
|
|
|
if web_dir_name:
|
|
web_dir_path = os.path.join(module_path, web_dir_name)
|
|
|
|
if os.path.isdir(web_dir_path):
|
|
project_name = project_config.project.name
|
|
|
|
EXTENSION_WEB_DIRS[project_name] = web_dir_path
|
|
|
|
logging.info("Automatically register web folder {} for {}".format(web_dir_name, project_name))
|
|
except Exception as e:
|
|
logging.warning(f"Unable to parse pyproject.toml due to lack dependency pydantic-settings, please run 'pip install -r requirements.txt': {e}")
|
|
|
|
if hasattr(module, "WEB_DIRECTORY") and getattr(module, "WEB_DIRECTORY") is not None:
|
|
web_dir = os.path.abspath(os.path.join(module_dir, getattr(module, "WEB_DIRECTORY")))
|
|
if os.path.isdir(web_dir):
|
|
EXTENSION_WEB_DIRS[module_name] = web_dir
|
|
|
|
# V1 node definition
|
|
if hasattr(module, "NODE_CLASS_MAPPINGS") and getattr(module, "NODE_CLASS_MAPPINGS") is not None:
|
|
for name, node_cls in module.NODE_CLASS_MAPPINGS.items():
|
|
if name not in ignore:
|
|
NODE_CLASS_MAPPINGS[name] = node_cls
|
|
node_cls.RELATIVE_PYTHON_MODULE = "{}.{}".format(module_parent, get_module_name(module_path))
|
|
if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS") and getattr(module, "NODE_DISPLAY_NAME_MAPPINGS") is not None:
|
|
NODE_DISPLAY_NAME_MAPPINGS.update(module.NODE_DISPLAY_NAME_MAPPINGS)
|
|
return True
|
|
# V3 Extension Definition
|
|
elif hasattr(module, "comfy_entrypoint"):
|
|
entrypoint = getattr(module, "comfy_entrypoint")
|
|
if not callable(entrypoint):
|
|
logging.warning(f"comfy_entrypoint in {module_path} is not callable, skipping.")
|
|
return False
|
|
try:
|
|
if inspect.iscoroutinefunction(entrypoint):
|
|
extension = await entrypoint()
|
|
else:
|
|
extension = entrypoint()
|
|
if not isinstance(extension, ComfyExtension):
|
|
logging.warning(f"comfy_entrypoint in {module_path} did not return a ComfyExtension, skipping.")
|
|
return False
|
|
node_list = await extension.get_node_list()
|
|
if not isinstance(node_list, list):
|
|
logging.warning(f"comfy_entrypoint in {module_path} did not return a list of nodes, skipping.")
|
|
return False
|
|
for node_cls in node_list:
|
|
node_cls: io.ComfyNode
|
|
schema = node_cls.GET_SCHEMA()
|
|
if schema.node_id not in ignore:
|
|
NODE_CLASS_MAPPINGS[schema.node_id] = node_cls
|
|
node_cls.RELATIVE_PYTHON_MODULE = "{}.{}".format(module_parent, get_module_name(module_path))
|
|
if schema.display_name is not None:
|
|
NODE_DISPLAY_NAME_MAPPINGS[schema.node_id] = schema.display_name
|
|
return True
|
|
except Exception as e:
|
|
logging.warning(f"Error while calling comfy_entrypoint in {module_path}: {e}")
|
|
return False
|
|
else:
|
|
logging.warning(f"Skip {module_path} module for custom nodes due to the lack of NODE_CLASS_MAPPINGS or NODES_LIST (need one).")
|
|
return False
|
|
except Exception as e:
|
|
logging.warning(traceback.format_exc())
|
|
logging.warning(f"Cannot import {module_path} module for custom nodes: {e}")
|
|
return False
|
|
|
|
async def init_external_custom_nodes():
|
|
"""
|
|
Initializes the external custom nodes.
|
|
|
|
This function loads custom nodes from the specified folder paths and imports them into the application.
|
|
It measures the import times for each custom node and logs the results.
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
base_node_names = set(NODE_CLASS_MAPPINGS.keys())
|
|
node_paths = folder_paths.get_folder_paths("custom_nodes")
|
|
node_import_times = []
|
|
for custom_node_path in node_paths:
|
|
possible_modules = os.listdir(os.path.realpath(custom_node_path))
|
|
if "__pycache__" in possible_modules:
|
|
possible_modules.remove("__pycache__")
|
|
|
|
for possible_module in possible_modules:
|
|
module_path = os.path.join(custom_node_path, possible_module)
|
|
if os.path.isfile(module_path) and os.path.splitext(module_path)[1] != ".py": continue
|
|
if module_path.endswith(".disabled"): continue
|
|
if args.disable_all_custom_nodes and possible_module not in args.whitelist_custom_nodes:
|
|
logging.info(f"Skipping {possible_module} due to disable_all_custom_nodes and whitelist_custom_nodes")
|
|
continue
|
|
time_before = time.perf_counter()
|
|
success = await load_custom_node(module_path, base_node_names, module_parent="custom_nodes")
|
|
node_import_times.append((time.perf_counter() - time_before, module_path, success))
|
|
|
|
if len(node_import_times) > 0:
|
|
logging.info("\nImport times for custom nodes:")
|
|
for n in sorted(node_import_times):
|
|
if n[2]:
|
|
import_message = ""
|
|
else:
|
|
import_message = " (IMPORT FAILED)"
|
|
logging.info("{:6.1f} seconds{}: {}".format(n[0], import_message, n[1]))
|
|
logging.info("")
|
|
|
|
async def init_builtin_extra_nodes():
|
|
"""
|
|
Initializes the built-in extra nodes in ComfyUI.
|
|
|
|
This function loads the extra node files located in the "comfy_extras" directory and imports them into ComfyUI.
|
|
If any of the extra node files fail to import, a warning message is logged.
|
|
|
|
Returns:
|
|
None
|
|
"""
|
|
extras_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_extras")
|
|
extras_files = [
|
|
"nodes_latent.py",
|
|
"nodes_hypernetwork.py",
|
|
"nodes_upscale_model.py",
|
|
"nodes_post_processing.py",
|
|
"nodes_mask.py",
|
|
"nodes_compositing.py",
|
|
"nodes_rebatch.py",
|
|
"nodes_model_merging.py",
|
|
"nodes_tomesd.py",
|
|
"nodes_clip_sdxl.py",
|
|
"nodes_canny.py",
|
|
"nodes_freelunch.py",
|
|
"nodes_custom_sampler.py",
|
|
"nodes_hypertile.py",
|
|
"nodes_model_advanced.py",
|
|
"nodes_model_downscale.py",
|
|
"nodes_images.py",
|
|
"nodes_video_model.py",
|
|
"nodes_train.py",
|
|
"nodes_sag.py",
|
|
"nodes_perpneg.py",
|
|
"nodes_stable3d.py",
|
|
"nodes_sdupscale.py",
|
|
"nodes_photomaker.py",
|
|
"nodes_pixart.py",
|
|
"nodes_cond.py",
|
|
"nodes_morphology.py",
|
|
"nodes_stable_cascade.py",
|
|
"nodes_differential_diffusion.py",
|
|
"nodes_ip2p.py",
|
|
"nodes_model_merging_model_specific.py",
|
|
"nodes_pag.py",
|
|
"nodes_align_your_steps.py",
|
|
"nodes_attention_multiply.py",
|
|
"nodes_advanced_samplers.py",
|
|
"nodes_webcam.py",
|
|
"nodes_audio.py",
|
|
"nodes_sd3.py",
|
|
"nodes_gits.py",
|
|
"nodes_controlnet.py",
|
|
"nodes_hunyuan.py",
|
|
"nodes_flux.py",
|
|
"nodes_lora_extract.py",
|
|
"nodes_torch_compile.py",
|
|
"nodes_mochi.py",
|
|
"nodes_slg.py",
|
|
"nodes_mahiro.py",
|
|
"nodes_lt.py",
|
|
"nodes_hooks.py",
|
|
"nodes_load_3d.py",
|
|
"nodes_cosmos.py",
|
|
"nodes_video.py",
|
|
"nodes_lumina2.py",
|
|
"nodes_wan.py",
|
|
"nodes_lotus.py",
|
|
"nodes_hunyuan3d.py",
|
|
"nodes_primitive.py",
|
|
"nodes_cfg.py",
|
|
"nodes_optimalsteps.py",
|
|
"nodes_hidream.py",
|
|
"nodes_fresca.py",
|
|
"nodes_apg.py",
|
|
"nodes_preview_any.py",
|
|
"nodes_ace.py",
|
|
"nodes_string.py",
|
|
"nodes_camera_trajectory.py",
|
|
"nodes_edit_model.py",
|
|
"nodes_tcfg.py",
|
|
"nodes_context_windows.py",
|
|
"nodes_qwen.py",
|
|
]
|
|
|
|
import_failed = []
|
|
for node_file in extras_files:
|
|
if not await load_custom_node(os.path.join(extras_dir, node_file), module_parent="comfy_extras"):
|
|
import_failed.append(node_file)
|
|
|
|
return import_failed
|
|
|
|
|
|
async def init_builtin_api_nodes():
|
|
api_nodes_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "comfy_api_nodes")
|
|
api_nodes_files = [
|
|
"nodes_ideogram.py",
|
|
"nodes_openai.py",
|
|
"nodes_minimax.py",
|
|
"nodes_veo2.py",
|
|
"nodes_kling.py",
|
|
"nodes_bfl.py",
|
|
"nodes_luma.py",
|
|
"nodes_recraft.py",
|
|
"nodes_pixverse.py",
|
|
"nodes_stability.py",
|
|
"nodes_pika.py",
|
|
"nodes_runway.py",
|
|
"nodes_tripo.py",
|
|
"nodes_moonvalley.py",
|
|
"nodes_rodin.py",
|
|
"nodes_gemini.py",
|
|
]
|
|
|
|
if not await load_custom_node(os.path.join(api_nodes_dir, "canary.py"), module_parent="comfy_api_nodes"):
|
|
return api_nodes_files
|
|
|
|
import_failed = []
|
|
for node_file in api_nodes_files:
|
|
if not await load_custom_node(os.path.join(api_nodes_dir, node_file), module_parent="comfy_api_nodes"):
|
|
import_failed.append(node_file)
|
|
|
|
return import_failed
|
|
|
|
async def init_public_apis():
|
|
register_versions([
|
|
ComfyAPIWithVersion(
|
|
version=getattr(v, "VERSION"),
|
|
api_class=v
|
|
) for v in supported_versions
|
|
])
|
|
|
|
async def init_extra_nodes(init_custom_nodes=True, init_api_nodes=True):
|
|
await init_public_apis()
|
|
|
|
import_failed = await init_builtin_extra_nodes()
|
|
|
|
import_failed_api = []
|
|
if init_api_nodes:
|
|
import_failed_api = await init_builtin_api_nodes()
|
|
|
|
if init_custom_nodes:
|
|
await init_external_custom_nodes()
|
|
else:
|
|
logging.info("Skipping loading of custom nodes")
|
|
|
|
if len(import_failed_api) > 0:
|
|
logging.warning("WARNING: some comfy_api_nodes/ nodes did not import correctly. This may be because they are missing some dependencies.\n")
|
|
for node in import_failed_api:
|
|
logging.warning("IMPORT FAILED: {}".format(node))
|
|
logging.warning("\nThis issue might be caused by new missing dependencies added the last time you updated ComfyUI.")
|
|
if args.windows_standalone_build:
|
|
logging.warning("Please run the update script: update/update_comfyui.bat")
|
|
else:
|
|
logging.warning("Please do a: pip install -r requirements.txt")
|
|
logging.warning("")
|
|
|
|
if len(import_failed) > 0:
|
|
logging.warning("WARNING: some comfy_extras/ nodes did not import correctly. This may be because they are missing some dependencies.\n")
|
|
for node in import_failed:
|
|
logging.warning("IMPORT FAILED: {}".format(node))
|
|
logging.warning("\nThis issue might be caused by new missing dependencies added the last time you updated ComfyUI.")
|
|
if args.windows_standalone_build:
|
|
logging.warning("Please run the update script: update/update_comfyui.bat")
|
|
else:
|
|
logging.warning("Please do a: pip install -r requirements.txt")
|
|
logging.warning("")
|
|
|
|
return import_failed
|