mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-09-09 19:17:44 +00:00
Doing some experimentation
This commit is contained in:
503
comfy_extras/nodes_easysortblock.py
Normal file
503
comfy_extras/nodes_easysortblock.py
Normal file
@@ -0,0 +1,503 @@
|
||||
from __future__ import annotations
|
||||
from typing import TYPE_CHECKING, Union
|
||||
|
||||
from comfy_api.latest import io, ComfyExtension
|
||||
import comfy.patcher_extension
|
||||
import logging
|
||||
import torch
|
||||
import math
|
||||
import comfy.model_patcher
|
||||
if TYPE_CHECKING:
|
||||
from uuid import UUID
|
||||
|
||||
|
||||
|
||||
def easysortblock_predict_noise_wrapper(executor, *args, **kwargs):
|
||||
# get values from args
|
||||
x: torch.Tensor = args[0]
|
||||
timestep: float = args[1]
|
||||
model_options: dict[str] = args[2]
|
||||
easycache: EasySortblockHolder = model_options["transformer_options"]["easycache"]
|
||||
|
||||
# initialize predict_ratios
|
||||
if easycache.initial_step:
|
||||
sample_sigmas = model_options["transformer_options"]["sample_sigmas"]
|
||||
relevant_sigmas = []
|
||||
for i,sigma in enumerate(sample_sigmas):
|
||||
if easycache.check_if_within_timesteps(sigma):
|
||||
relevant_sigmas.append((i, sigma))
|
||||
start_index = relevant_sigmas[0][0]
|
||||
end_index = relevant_sigmas[-1][0]
|
||||
easycache.predict_ratios = torch.linspace(easycache.start_predict_ratio, easycache.end_predict_ratio, end_index - start_index + 1)
|
||||
easycache.predict_start_index = start_index
|
||||
|
||||
easycache.skip_current_step = False
|
||||
if easycache.is_past_end_timestep(timestep):
|
||||
return executor(*args, **kwargs)
|
||||
# prepare next x_prev
|
||||
next_x_prev = x
|
||||
input_change = None
|
||||
do_easycache = easycache.should_do_easycache(timestep)
|
||||
if do_easycache:
|
||||
easycache.check_metadata(x)
|
||||
if easycache.has_x_prev_subsampled():
|
||||
if easycache.has_x_prev_subsampled():
|
||||
input_change = (easycache.subsample(x, clone=False) - easycache.x_prev_subsampled).flatten().abs().mean()
|
||||
if easycache.has_output_prev_norm() and easycache.has_relative_transformation_rate():
|
||||
approx_output_change_rate = (easycache.relative_transformation_rate * input_change) / easycache.output_prev_norm
|
||||
easycache.cumulative_change_rate += approx_output_change_rate
|
||||
if easycache.cumulative_change_rate < easycache.reuse_threshold:
|
||||
if easycache.verbose:
|
||||
logging.info(f"EasySortblock [verbose] - skipping step; cumulative_change_rate: {easycache.cumulative_change_rate}, reuse_threshold: {easycache.reuse_threshold}")
|
||||
# other conds should also skip this step
|
||||
easycache.skip_current_step = True
|
||||
easycache.steps_skipped.append(easycache.step_count)
|
||||
else:
|
||||
if easycache.verbose:
|
||||
logging.info(f"EasySortblock [verbose] - NOT skipping step; cumulative_change_rate: {easycache.cumulative_change_rate}, reuse_threshold: {easycache.reuse_threshold}")
|
||||
easycache.cumulative_change_rate = 0.0
|
||||
output: torch.Tensor = executor(*args, **kwargs)
|
||||
if easycache.has_output_prev_norm():
|
||||
output_change = (easycache.subsample(output, clone=False) - easycache.output_prev_subsampled).flatten().abs().mean()
|
||||
if easycache.verbose:
|
||||
output_change_rate = output_change / easycache.output_prev_norm
|
||||
easycache.output_change_rates.append(output_change_rate.item())
|
||||
if easycache.has_relative_transformation_rate():
|
||||
approx_output_change_rate = (easycache.relative_transformation_rate * input_change) / easycache.output_prev_norm
|
||||
easycache.approx_output_change_rates.append(approx_output_change_rate.item())
|
||||
if easycache.verbose:
|
||||
logging.info(f"EasySortblock [verbose] - approx_output_change_rate: {approx_output_change_rate}")
|
||||
if input_change is not None:
|
||||
easycache.relative_transformation_rate = output_change / input_change
|
||||
if easycache.verbose:
|
||||
logging.info(f"EasySortblock [verbose] - output_change_rate: {output_change_rate}")
|
||||
easycache.x_prev_subsampled = easycache.subsample(next_x_prev)
|
||||
easycache.output_prev_subsampled = easycache.subsample(output)
|
||||
easycache.output_prev_norm = output.flatten().abs().mean()
|
||||
if easycache.verbose:
|
||||
logging.info(f"EasySortblock [verbose] - x_prev_subsampled: {easycache.x_prev_subsampled.shape}")
|
||||
|
||||
# increment step count
|
||||
easycache.step_count += 1
|
||||
easycache.initial_step = False
|
||||
|
||||
return output
|
||||
|
||||
|
||||
def easysortblock_outer_sample_wrapper(executor, *args, **kwargs):
|
||||
"""
|
||||
This OUTER_SAMPLE wrapper makes sure EasySortblock is prepped for current run, and all memory usage is cleared at the end.
|
||||
"""
|
||||
try:
|
||||
guider = executor.class_obj
|
||||
orig_model_options = guider.model_options
|
||||
guider.model_options = comfy.model_patcher.create_model_options_clone(orig_model_options)
|
||||
# clone and prepare timesteps
|
||||
guider.model_options["transformer_options"]["easycache"] = guider.model_options["transformer_options"]["easycache"].clone().prepare_timesteps(guider.model_patcher.model.model_sampling)
|
||||
easycache: EasySortblockHolder = guider.model_options['transformer_options']['easycache']
|
||||
logging.info(f"{easycache.name} enabled - threshold: {easycache.reuse_threshold}, start_percent: {easycache.start_percent}, end_percent: {easycache.end_percent}")
|
||||
return executor(*args, **kwargs)
|
||||
finally:
|
||||
easycache = guider.model_options['transformer_options']['easycache']
|
||||
output_change_rates = easycache.output_change_rates
|
||||
approx_output_change_rates = easycache.approx_output_change_rates
|
||||
if easycache.verbose:
|
||||
logging.info(f"{easycache.name} [verbose] - output_change_rates {len(output_change_rates)}: {output_change_rates}")
|
||||
logging.info(f"{easycache.name} [verbose] - approx_output_change_rates {len(approx_output_change_rates)}: {approx_output_change_rates}")
|
||||
total_steps = len(args[3])-1
|
||||
logging.info(f"{easycache.name} - skipped {len(easycache.steps_skipped)}/{total_steps} steps")# ({total_steps/(total_steps-easycache.total_steps_skipped):.2f}x speedup).")
|
||||
logging.info(f"{easycache.name} - skipped steps: {easycache.steps_skipped}")
|
||||
easycache.reset()
|
||||
guider.model_options = orig_model_options
|
||||
|
||||
|
||||
def model_forward_wrapper(executor, *args, **kwargs):
|
||||
# TODO: make work with batches of conds
|
||||
transformer_options: dict[str] = args[-1]
|
||||
if not isinstance(transformer_options, dict):
|
||||
transformer_options = kwargs.get("transformer_options")
|
||||
if not transformer_options:
|
||||
transformer_options = args[-2]
|
||||
sigmas = transformer_options["sigmas"]
|
||||
sb_holder: EasySortblockHolder = transformer_options["easycache"]
|
||||
|
||||
# if initial step, prepare everything for Sortblock
|
||||
if sb_holder.initial_step:
|
||||
logging.info(f"EasySortblock: inside model {executor.class_obj.__class__.__name__}")
|
||||
# TODO: generalize for other models
|
||||
# these won't stick around past this step; should store on sb_holder instead
|
||||
logging.info(f"EasySortblock: preparing {len(executor.class_obj.double_blocks)} double blocks and {len(executor.class_obj.single_blocks)} single blocks")
|
||||
if hasattr(executor.class_obj, "double_blocks"):
|
||||
for block in executor.class_obj.double_blocks:
|
||||
prepare_block(block, sb_holder)
|
||||
if hasattr(executor.class_obj, "single_blocks"):
|
||||
for block in executor.class_obj.single_blocks:
|
||||
prepare_block(block, sb_holder)
|
||||
if hasattr(executor.class_obj, "blocks"):
|
||||
for block in executor.class_obj.block:
|
||||
prepare_block(block, sb_holder)
|
||||
|
||||
if sb_holder.skip_current_step:
|
||||
predict_index = max(0, sb_holder.step_count - sb_holder.predict_start_index)
|
||||
predict_ratio = sb_holder.predict_ratios[predict_index]
|
||||
logging.info(f"EasySortblock: skipping step {sb_holder.step_count}, predict_ratio: {predict_ratio}")
|
||||
# reuse_ratio = 1.0 - predict_ratio
|
||||
for block_type, blocks in sb_holder.blocks_per_type.items():
|
||||
for block in blocks:
|
||||
cache: BlockCache = block.__block_cache
|
||||
cache.allowed_to_skip = False
|
||||
sorted_blocks = sorted(blocks, key=lambda x: (x.__block_cache.consecutive_skipped_steps, x.__block_cache.prev_change_rate))
|
||||
# for block in sorted_blocks:
|
||||
# pass
|
||||
threshold_index = int(len(sorted_blocks) * predict_ratio)
|
||||
# blocks with lower similarity are marked for recomputation
|
||||
for block in sorted_blocks[:threshold_index]:
|
||||
cache: BlockCache = block.__block_cache
|
||||
cache.allowed_to_skip = True
|
||||
logging.info(f"EasySortblock: skip block {block.__class__.__name__} - consecutive_skipped_steps: {block.__block_cache.consecutive_skipped_steps}, prev_change_rate: {block.__block_cache.prev_change_rate}, index: {block.__block_cache.block_index}")
|
||||
not_skipped = [block for block in blocks if not block.__block_cache.allowed_to_skip]
|
||||
for block in not_skipped:
|
||||
logging.info(f"EasySortblock: reco block {block.__class__.__name__} - consecutive_skipped_steps: {block.__block_cache.consecutive_skipped_steps}, prev_change_rate: {block.__block_cache.prev_change_rate}, index: {block.__block_cache.block_index}")
|
||||
logging.info(f"EasySortblock: for {block_type}, selected {len(sorted_blocks[:threshold_index])} blocks for prediction and {len(sorted_blocks[threshold_index:])} blocks for recomputation")
|
||||
# return executor(*args, **kwargs)
|
||||
to_return = executor(*args, **kwargs)
|
||||
|
||||
return to_return
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
def block_forward_factory(func, block):
|
||||
def block_forward_wrapper(*args, **kwargs):
|
||||
transformer_options: dict[str] = kwargs.get("transformer_options")
|
||||
sigmas = transformer_options["sigmas"]
|
||||
sb_holder: EasySortblockHolder = transformer_options["easycache"]
|
||||
cache: BlockCache = block.__block_cache
|
||||
# make sure stream count is properly set for this block
|
||||
if sb_holder.initial_step:
|
||||
sb_holder.add_to_blocks_per_type(block, transformer_options['block'][0])
|
||||
cache.block_index = transformer_options['block'][1]
|
||||
cache.stream_count = transformer_options['block'][2]
|
||||
|
||||
if sb_holder.is_past_end_timestep(sigmas):
|
||||
return func(*args, **kwargs)
|
||||
# do sortblock stuff
|
||||
x = cache.get_next_x_prev(args, kwargs)
|
||||
# prepare next_x_prev
|
||||
next_x_prev = cache.get_next_x_prev(args, kwargs, clone=True)
|
||||
input_change = None
|
||||
do_sortblock = sb_holder.should_do_easycache(sigmas)
|
||||
if do_sortblock:
|
||||
# TODO: checkmetadata
|
||||
if cache.has_x_prev_subsampled():
|
||||
input_change = (cache.subsample(x, clone=False) - cache.x_prev_subsampled).flatten().abs().mean()
|
||||
if cache.has_output_prev_norm() and cache.has_relative_transformation_rate():
|
||||
approx_output_change_rate = (cache.relative_transformation_rate * input_change) / cache.output_prev_norm
|
||||
cache.cumulative_change_rate += approx_output_change_rate
|
||||
if cache.allowed_to_skip:
|
||||
# if cache.cumulative_change_rate < sb_holder.reuse_threshold:
|
||||
# accumulate error + skip block
|
||||
# cache.want_to_skip = True
|
||||
# if cache.allowed_to_skip:
|
||||
cache.consecutive_skipped_steps += 1
|
||||
cache.prev_change_rate = approx_output_change_rate
|
||||
return cache.apply_cache_diff(x, sb_holder)
|
||||
else:
|
||||
# reset error; NOT skipping block and recalculating
|
||||
cache.cumulative_change_rate = 0.0
|
||||
cache.prev_change_rate = approx_output_change_rate
|
||||
cache.want_to_skip = False
|
||||
cache.consecutive_skipped_steps = 0
|
||||
# output_raw is expected to have cache.stream_count elements if count is greaater than 1 (double block, etc.)
|
||||
output_raw: Union[torch.Tensor, tuple[torch.Tensor, ...]] = func(*args, **kwargs)
|
||||
# if more than one stream from block, only use first one
|
||||
if isinstance(output_raw, tuple):
|
||||
output = output_raw[0]
|
||||
else:
|
||||
output = output_raw
|
||||
if cache.has_output_prev_norm():
|
||||
output_change = (cache.subsample(output, clone=False) - cache.output_prev_subsampled).flatten().abs().mean()
|
||||
# if verbose in future
|
||||
output_change_rate = output_change / cache.output_prev_norm
|
||||
cache.output_change_rates.append(output_change_rate.item())
|
||||
if cache.has_relative_transformation_rate():
|
||||
approx_output_change_rate = (cache.relative_transformation_rate * input_change) / cache.output_prev_norm
|
||||
cache.approx_output_change_rates.append(approx_output_change_rate.item())
|
||||
if input_change is not None:
|
||||
cache.relative_transformation_rate = output_change / input_change
|
||||
# TODO: allow cache_diff to be offloaded
|
||||
cache.update_cache_diff(output_raw, next_x_prev)
|
||||
cache.x_prev_subsampled = cache.subsample(next_x_prev)
|
||||
cache.output_prev_subsampled = cache.subsample(output)
|
||||
cache.output_prev_norm = output.flatten().abs().mean()
|
||||
return output_raw
|
||||
return block_forward_wrapper
|
||||
|
||||
def prepare_block(block, sb_holder: EasySortblockHolder, stream_count: int=1):
|
||||
sb_holder.add_to_all_blocks(block)
|
||||
block.__original_forward = block.forward
|
||||
block.forward = block_forward_factory(block.__original_forward, block)
|
||||
block.__block_cache = BlockCache(subsample_factor=sb_holder.subsample_factor, verbose=sb_holder.verbose)
|
||||
|
||||
def clean_block(block):
|
||||
block.forward = block.__original_forward
|
||||
del block.__original_forward
|
||||
del block.__block_cache
|
||||
|
||||
class BlockCache:
|
||||
def __init__(self, subsample_factor: int=8, verbose: bool=False):
|
||||
self.subsample_factor = subsample_factor
|
||||
self.verbose = verbose
|
||||
self.stream_count = 1
|
||||
self.block_index = 0
|
||||
# control values
|
||||
self.relative_transformation_rate: float = None
|
||||
self.cumulative_change_rate = 0.0
|
||||
self.prev_change_rate = 0.0
|
||||
# cached values
|
||||
self.x_prev_subsampled: torch.Tensor = None
|
||||
self.output_prev_subsampled: torch.Tensor = None
|
||||
self.output_prev_norm: torch.Tensor = None
|
||||
self.cache_diff: list[torch.Tensor] = []
|
||||
self.output_change_rates = []
|
||||
self.approx_output_change_rates = []
|
||||
self.steps_skipped: list[int] = []
|
||||
self.consecutive_skipped_steps = 0
|
||||
# self.state_metadata = None
|
||||
self.want_to_skip = False
|
||||
self.allowed_to_skip = False
|
||||
|
||||
def has_cache_diff(self) -> bool:
|
||||
return self.cache_diff[0] is not None
|
||||
|
||||
def has_x_prev_subsampled(self) -> bool:
|
||||
return self.x_prev_subsampled is not None
|
||||
|
||||
def has_output_prev_subsampled(self) -> bool:
|
||||
return self.output_prev_subsampled is not None
|
||||
|
||||
def has_output_prev_norm(self) -> bool:
|
||||
return self.output_prev_norm is not None
|
||||
|
||||
def has_relative_transformation_rate(self) -> bool:
|
||||
return self.relative_transformation_rate is not None
|
||||
|
||||
def get_next_x_prev(self, d_args: tuple[torch.Tensor, ...], d_kwargs: dict[str, torch.Tensor], clone: bool=False) -> tuple[torch.Tensor, ...]:
|
||||
if self.stream_count == 1:
|
||||
if clone:
|
||||
return d_args[0].clone()
|
||||
return d_args[0]
|
||||
keys = list(d_kwargs.keys())[:self.stream_count]
|
||||
orig_inputs = []
|
||||
for key in keys:
|
||||
if clone:
|
||||
orig_inputs.append(d_kwargs[key].clone())
|
||||
else:
|
||||
orig_inputs.append(d_kwargs[key])
|
||||
return tuple(orig_inputs)
|
||||
|
||||
def subsample(self, x: Union[torch.Tensor, tuple[torch.Tensor, ...]], clone: bool = True) -> torch.Tensor:
|
||||
# subsample only the first compoenent
|
||||
if isinstance(x, tuple):
|
||||
return self.subsample(x[0], clone)
|
||||
if self.subsample_factor > 1:
|
||||
to_return = x[..., ::self.subsample_factor, ::self.subsample_factor]
|
||||
if clone:
|
||||
return to_return.clone()
|
||||
return to_return
|
||||
if clone:
|
||||
return x.clone()
|
||||
return x
|
||||
|
||||
def apply_cache_diff(self, x: Union[torch.Tensor, tuple[torch.Tensor, ...]], sb_holder: EasySortblockHolder):
|
||||
self.steps_skipped.append(sb_holder.step_count)
|
||||
if not isinstance(x, tuple):
|
||||
x = (x, )
|
||||
to_return = tuple([x[i] + self.cache_diff[i] for i in range(self.stream_count)])
|
||||
if len(to_return) == 1:
|
||||
return to_return[0]
|
||||
return to_return
|
||||
|
||||
def update_cache_diff(self, output_raw: Union[torch.Tensor, tuple[torch.Tensor, ...]], x: Union[torch.Tensor, tuple[torch.Tensor, ...]]):
|
||||
if not isinstance(output_raw, tuple):
|
||||
output_raw = (output_raw, )
|
||||
if not isinstance(x, tuple):
|
||||
x = (x, )
|
||||
self.cache_diff = tuple([output_raw[i] - x[i] for i in range(self.stream_count)])
|
||||
|
||||
def reset(self):
|
||||
self.relative_transformation_rate = 0.0
|
||||
self.cumulative_change_rate = 0.0
|
||||
self.prev_change_rate = 0.0
|
||||
self.x_prev_subsampled = None
|
||||
self.output_prev_subsampled = None
|
||||
self.output_prev_norm = None
|
||||
self.cache_diff = []
|
||||
self.output_change_rates = []
|
||||
self.approx_output_change_rates = []
|
||||
self.steps_skipped = []
|
||||
self.consecutive_skipped_steps = 0
|
||||
self.want_to_skip = False
|
||||
self.allowed_to_skip = False
|
||||
return self
|
||||
|
||||
|
||||
class EasySortblockHolder:
|
||||
def __init__(self, reuse_threshold: float, start_predict_ratio: float, end_predict_ratio: float, max_skipped_steps: int,
|
||||
start_percent: float, end_percent: float, subsample_factor: int, verbose: bool=False):
|
||||
self.name = "EasySortblock"
|
||||
self.reuse_threshold = reuse_threshold
|
||||
self.start_predict_ratio = start_predict_ratio
|
||||
self.end_predict_ratio = end_predict_ratio
|
||||
self.max_skipped_steps = max_skipped_steps
|
||||
self.start_percent = start_percent
|
||||
self.end_percent = end_percent
|
||||
self.subsample_factor = subsample_factor
|
||||
self.verbose = verbose
|
||||
# timestep values
|
||||
self.start_t = 0.0
|
||||
self.end_t = 0.0
|
||||
# control values
|
||||
self.relative_transformation_rate: float = None
|
||||
self.cumulative_change_rate = 0.0
|
||||
self.initial_step = True
|
||||
self.step_count = 0
|
||||
self.predict_ratios = []
|
||||
self.skip_current_step = False
|
||||
self.predict_start_index = 0
|
||||
# cache values
|
||||
self.x_prev_subsampled: torch.Tensor = None
|
||||
self.output_prev_subsampled: torch.Tensor = None
|
||||
self.output_prev_norm: torch.Tensor = None
|
||||
self.steps_skipped: list[int] = []
|
||||
self.output_change_rates = []
|
||||
self.approx_output_change_rates = []
|
||||
self.state_metadata = None
|
||||
self.all_blocks = []
|
||||
self.blocks_per_type = {}
|
||||
|
||||
def add_to_all_blocks(self, block):
|
||||
self.all_blocks.append(block)
|
||||
|
||||
def add_to_blocks_per_type(self, block, block_type: str):
|
||||
self.blocks_per_type.setdefault(block_type, []).append(block)
|
||||
|
||||
def is_past_end_timestep(self, timestep: float) -> bool:
|
||||
return not (timestep[0] > self.end_t).item()
|
||||
|
||||
def should_do_easycache(self, timestep: float) -> bool:
|
||||
return (timestep[0] <= self.start_t).item()
|
||||
|
||||
def check_if_within_timesteps(self, timestep: Union[float, torch.Tensor]) -> bool:
|
||||
return (timestep <= self.start_t).item() and (timestep > self.end_t).item()
|
||||
|
||||
def has_x_prev_subsampled(self) -> bool:
|
||||
return self.x_prev_subsampled is not None
|
||||
|
||||
def has_output_prev_subsampled(self) -> bool:
|
||||
return self.output_prev_subsampled is not None
|
||||
|
||||
def has_output_prev_norm(self) -> bool:
|
||||
return self.output_prev_norm is not None
|
||||
|
||||
def has_relative_transformation_rate(self) -> bool:
|
||||
return self.relative_transformation_rate is not None
|
||||
|
||||
def prepare_timesteps(self, model_sampling):
|
||||
self.start_t = model_sampling.percent_to_sigma(self.start_percent)
|
||||
self.end_t = model_sampling.percent_to_sigma(self.end_percent)
|
||||
return self
|
||||
|
||||
def subsample(self, x: torch.Tensor, clone: bool = True) -> torch.Tensor:
|
||||
if self.subsample_factor > 1:
|
||||
to_return = x[..., ::self.subsample_factor, ::self.subsample_factor]
|
||||
if clone:
|
||||
return to_return.clone()
|
||||
return to_return
|
||||
if clone:
|
||||
return x.clone()
|
||||
return x
|
||||
|
||||
def check_metadata(self, x: torch.Tensor) -> bool:
|
||||
metadata = (x.device, x.dtype, x.shape)
|
||||
if self.state_metadata is None:
|
||||
self.state_metadata = metadata
|
||||
return True
|
||||
if metadata == self.state_metadata:
|
||||
return True
|
||||
logging.warning(f"{self.name} - Tensor shape, dtype or device changed, resetting state")
|
||||
self.reset()
|
||||
return False
|
||||
|
||||
def reset(self):
|
||||
logging.info(f"EasySortblock: resetting {len(self.all_blocks)} blocks")
|
||||
for block in self.all_blocks:
|
||||
clean_block(block)
|
||||
self.relative_transformation_rate = 0.0
|
||||
self.cumulative_change_rate = 0.0
|
||||
self.initial_step = True
|
||||
self.step_count = 0
|
||||
self.predict_ratios = []
|
||||
self.skip_current_step = False
|
||||
self.predict_start_index = 0
|
||||
self.x_prev_subsampled = None
|
||||
self.output_prev_subsampled = None
|
||||
self.output_prev_norm = None
|
||||
self.steps_skipped = []
|
||||
self.output_change_rates = []
|
||||
self.approx_output_change_rates = []
|
||||
self.state_metadata = None
|
||||
self.all_blocks = []
|
||||
self.blocks_per_type = {}
|
||||
return self
|
||||
|
||||
def clone(self):
|
||||
return EasySortblockHolder(self.reuse_threshold, self.start_predict_ratio, self.end_predict_ratio, self.max_skipped_steps,
|
||||
self.start_percent, self.end_percent, self.subsample_factor, self.verbose)
|
||||
|
||||
class EasySortblockScaledNode(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls) -> io.Schema:
|
||||
return io.Schema(
|
||||
node_id="EasySortblockScaled",
|
||||
display_name="EasySortblockScaled",
|
||||
description="A homebrew version of EasyCache - even 'easier' version of EasyCache to implement. Overall works worse than EasyCache, but better in some rare cases AND universal compatibility with everything in ComfyUI.",
|
||||
category="advanced/debug/model",
|
||||
is_experimental=True,
|
||||
inputs=[
|
||||
io.Model.Input("model", tooltip="The model to add Sortblock to."),
|
||||
io.Float.Input("reuse_threshold", min=0.0, default=0.2, max=3.0, step=0.01, tooltip="The threshold for reusing cached steps."),
|
||||
io.Float.Input("start_predict_ratio", min=0.0, default=0.2, max=1.0, step=0.01, tooltip="The ratio of blocks to predict."),
|
||||
io.Float.Input("end_predict_ratio", min=0.0, default=0.9, max=1.0, step=0.01, tooltip="The ratio of blocks to predict."),
|
||||
io.Int.Input("policy_refresh_interval", min=3, default=5, max=100, step=1, tooltip="The interval at which to refresh the policy."),
|
||||
io.Float.Input("start_percent", min=0.0, default=0.15, max=1.0, step=0.01, tooltip="The relative sampling step to begin use of Sortblock."),
|
||||
io.Float.Input("end_percent", min=0.0, default=0.95, max=1.0, step=0.01, tooltip="The relative sampling step to end use of Sortblock."),
|
||||
io.Boolean.Input("verbose", default=False, tooltip="Whether to log verbose information."),
|
||||
],
|
||||
outputs=[
|
||||
io.Model.Output(tooltip="The model with Sortblock."),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, model: io.Model.Type, reuse_threshold: float, start_predict_ratio: float, end_predict_ratio: float, policy_refresh_interval: int, start_percent: float, end_percent: float, verbose: bool) -> io.NodeOutput:
|
||||
# TODO: check for specific flavors of supported models
|
||||
model = model.clone()
|
||||
model.model_options["transformer_options"]["easycache"] = EasySortblockHolder(reuse_threshold, start_predict_ratio, end_predict_ratio, policy_refresh_interval, start_percent, end_percent, subsample_factor=8, verbose=verbose)
|
||||
model.add_wrapper_with_key(comfy.patcher_extension.WrappersMP.PREDICT_NOISE, "sortblock", easysortblock_predict_noise_wrapper)
|
||||
model.add_wrapper_with_key(comfy.patcher_extension.WrappersMP.OUTER_SAMPLE, "sortblock", easysortblock_outer_sample_wrapper)
|
||||
model.add_wrapper_with_key(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, "sortblock", model_forward_wrapper)
|
||||
return io.NodeOutput(model)
|
||||
|
||||
|
||||
class EasySortblockExtension(ComfyExtension):
|
||||
async def get_node_list(self) -> list[type[io.ComfyNode]]:
|
||||
return [
|
||||
# EasySortblockNode,
|
||||
EasySortblockScaledNode,
|
||||
]
|
||||
|
||||
def comfy_entrypoint():
|
||||
return EasySortblockExtension()
|
||||
|
@@ -25,6 +25,7 @@ def prepare_noise_wrapper(executor, *args, **kwargs):
|
||||
start_index = relevant_sigmas[0][0]
|
||||
end_index = relevant_sigmas[-1][0]
|
||||
sb_holder.predict_ratios = torch.linspace(sb_holder.start_predict_ratio, sb_holder.end_predict_ratio, end_index - start_index + 1)
|
||||
sb_holder.predict_start_index = start_index
|
||||
|
||||
return executor(*args, **kwargs)
|
||||
finally:
|
||||
@@ -95,7 +96,8 @@ def model_forward_wrapper(executor, *args, **kwargs):
|
||||
|
||||
# when 1: Select DiT blocks(4)
|
||||
if sb_holder.step_modulus == 1:
|
||||
predict_ratio = sb_holder.predict_ratios[sb_holder.active_steps-1]
|
||||
predict_index = max(0, sb_holder.step_count - sb_holder.predict_start_index)
|
||||
predict_ratio = sb_holder.predict_ratios[predict_index]
|
||||
logging.info(f"Sortblock: for step {sb_holder.step_count}, selecting blocks for recomputation and prediction, predict_ratio: {predict_ratio}")
|
||||
reuse_ratio = 1.0 - predict_ratio
|
||||
for block_type, blocks in sb_holder.blocks_per_type.items():
|
||||
@@ -322,6 +324,7 @@ class SortblockHolder:
|
||||
self.do_sortblock = False
|
||||
self.active_steps = 0
|
||||
self.predict_ratios = []
|
||||
self.predict_start_index = 0
|
||||
|
||||
# cache values
|
||||
self.all_blocks = []
|
||||
@@ -371,6 +374,7 @@ class SortblockHolder:
|
||||
self.active_steps = 0
|
||||
self.predict_ratios = []
|
||||
self.do_sortblock = False
|
||||
self.predict_start_index = 0
|
||||
return self
|
||||
|
||||
def clone(self):
|
||||
|
Reference in New Issue
Block a user