Files
ComfyUI/comfy_api_nodes/nodes_bytedance.py
2025-09-09 14:40:29 -04:00

1012 lines
36 KiB
Python

import logging
import math
from enum import Enum
from typing import Literal, Optional, Type, Union
from typing_extensions import override
import torch
from pydantic import BaseModel, Field
from comfy_api.latest import ComfyExtension, io as comfy_io
from comfy_api_nodes.util.validation_utils import (
validate_image_aspect_ratio_range,
get_number_of_images,
validate_image_dimensions,
)
from comfy_api_nodes.apis.client import (
ApiEndpoint,
EmptyRequest,
HttpMethod,
SynchronousOperation,
PollingOperation,
T,
)
from comfy_api_nodes.apinode_utils import (
download_url_to_image_tensor,
download_url_to_video_output,
upload_images_to_comfyapi,
validate_string,
image_tensor_pair_to_batch,
)
BYTEPLUS_IMAGE_ENDPOINT = "/proxy/byteplus/api/v3/images/generations"
# Long-running tasks endpoints(e.g., video)
BYTEPLUS_TASK_ENDPOINT = "/proxy/byteplus/api/v3/contents/generations/tasks"
BYTEPLUS_TASK_STATUS_ENDPOINT = "/proxy/byteplus/api/v3/contents/generations/tasks" # + /{task_id}
class Text2ImageModelName(str, Enum):
seedream_3 = "seedream-3-0-t2i-250415"
class Image2ImageModelName(str, Enum):
seededit_3 = "seededit-3-0-i2i-250628"
class Text2VideoModelName(str, Enum):
seedance_1_pro = "seedance-1-0-pro-250528"
seedance_1_lite = "seedance-1-0-lite-t2v-250428"
class Image2VideoModelName(str, Enum):
"""note(August 31): Pro model only supports FirstFrame: https://docs.byteplus.com/en/docs/ModelArk/1520757"""
seedance_1_pro = "seedance-1-0-pro-250528"
seedance_1_lite = "seedance-1-0-lite-i2v-250428"
class Text2ImageTaskCreationRequest(BaseModel):
model: Text2ImageModelName = Text2ImageModelName.seedream_3
prompt: str = Field(...)
response_format: Optional[str] = Field("url")
size: Optional[str] = Field(None)
seed: Optional[int] = Field(0, ge=0, le=2147483647)
guidance_scale: Optional[float] = Field(..., ge=1.0, le=10.0)
watermark: Optional[bool] = Field(True)
class Image2ImageTaskCreationRequest(BaseModel):
model: Image2ImageModelName = Image2ImageModelName.seededit_3
prompt: str = Field(...)
response_format: Optional[str] = Field("url")
image: str = Field(..., description="Base64 encoded string or image URL")
size: Optional[str] = Field("adaptive")
seed: Optional[int] = Field(..., ge=0, le=2147483647)
guidance_scale: Optional[float] = Field(..., ge=1.0, le=10.0)
watermark: Optional[bool] = Field(True)
class ImageTaskCreationResponse(BaseModel):
model: str = Field(...)
created: int = Field(..., description="Unix timestamp (in seconds) indicating time when the request was created.")
data: list = Field([], description="Contains information about the generated image(s).")
error: dict = Field({}, description="Contains `code` and `message` fields in case of error.")
class TaskTextContent(BaseModel):
type: str = Field("text")
text: str = Field(...)
class TaskImageContentUrl(BaseModel):
url: str = Field(...)
class TaskImageContent(BaseModel):
type: str = Field("image_url")
image_url: TaskImageContentUrl = Field(...)
role: Optional[Literal["first_frame", "last_frame", "reference_image"]] = Field(None)
class Text2VideoTaskCreationRequest(BaseModel):
model: Text2VideoModelName = Text2VideoModelName.seedance_1_pro
content: list[TaskTextContent] = Field(..., min_length=1)
class Image2VideoTaskCreationRequest(BaseModel):
model: Image2VideoModelName = Image2VideoModelName.seedance_1_pro
content: list[Union[TaskTextContent, TaskImageContent]] = Field(..., min_length=2)
class TaskCreationResponse(BaseModel):
id: str = Field(...)
class TaskStatusError(BaseModel):
code: str = Field(...)
message: str = Field(...)
class TaskStatusResult(BaseModel):
video_url: str = Field(...)
class TaskStatusResponse(BaseModel):
id: str = Field(...)
model: str = Field(...)
status: Literal["queued", "running", "cancelled", "succeeded", "failed"] = Field(...)
error: Optional[TaskStatusError] = Field(None)
content: Optional[TaskStatusResult] = Field(None)
RECOMMENDED_PRESETS = [
("1024x1024 (1:1)", 1024, 1024),
("864x1152 (3:4)", 864, 1152),
("1152x864 (4:3)", 1152, 864),
("1280x720 (16:9)", 1280, 720),
("720x1280 (9:16)", 720, 1280),
("832x1248 (2:3)", 832, 1248),
("1248x832 (3:2)", 1248, 832),
("1512x648 (21:9)", 1512, 648),
("2048x2048 (1:1)", 2048, 2048),
("Custom", None, None),
]
# The time in this dictionary are given for 10 seconds duration.
VIDEO_TASKS_EXECUTION_TIME = {
"seedance-1-0-lite-t2v-250428": {
"480p": 40,
"720p": 60,
"1080p": 90,
},
"seedance-1-0-lite-i2v-250428": {
"480p": 40,
"720p": 60,
"1080p": 90,
},
"seedance-1-0-pro-250528": {
"480p": 70,
"720p": 85,
"1080p": 115,
},
}
def get_image_url_from_response(response: ImageTaskCreationResponse) -> str:
if response.error:
error_msg = f"ByteDance request failed. Code: {response.error['code']}, message: {response.error['message']}"
logging.info(error_msg)
raise RuntimeError(error_msg)
logging.info("ByteDance task succeeded, image URL: %s", response.data[0]["url"])
return response.data[0]["url"]
def get_video_url_from_task_status(response: TaskStatusResponse) -> Union[str, None]:
"""Returns the video URL from the task status response if it exists."""
if hasattr(response, "content") and response.content:
return response.content.video_url
return None
async def poll_until_finished(
auth_kwargs: dict[str, str],
task_id: str,
estimated_duration: Optional[int] = None,
node_id: Optional[str] = None,
) -> TaskStatusResponse:
"""Polls the ByteDance API endpoint until the task reaches a terminal state, then returns the response."""
return await PollingOperation(
poll_endpoint=ApiEndpoint(
path=f"{BYTEPLUS_TASK_STATUS_ENDPOINT}/{task_id}",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=TaskStatusResponse,
),
completed_statuses=[
"succeeded",
],
failed_statuses=[
"cancelled",
"failed",
],
status_extractor=lambda response: response.status,
auth_kwargs=auth_kwargs,
result_url_extractor=get_video_url_from_task_status,
estimated_duration=estimated_duration,
node_id=node_id,
).execute()
class ByteDanceImageNode(comfy_io.ComfyNode):
@classmethod
def define_schema(cls):
return comfy_io.Schema(
node_id="ByteDanceImageNode",
display_name="ByteDance Image",
category="api node/image/ByteDance",
description="Generate images using ByteDance models via api based on prompt",
inputs=[
comfy_io.Combo.Input(
"model",
options=[model.value for model in Text2ImageModelName],
default=Text2ImageModelName.seedream_3.value,
tooltip="Model name",
),
comfy_io.String.Input(
"prompt",
multiline=True,
tooltip="The text prompt used to generate the image",
),
comfy_io.Combo.Input(
"size_preset",
options=[label for label, _, _ in RECOMMENDED_PRESETS],
tooltip="Pick a recommended size. Select Custom to use the width and height below",
),
comfy_io.Int.Input(
"width",
default=1024,
min=512,
max=2048,
step=64,
tooltip="Custom width for image. Value is working only if `size_preset` is set to `Custom`",
),
comfy_io.Int.Input(
"height",
default=1024,
min=512,
max=2048,
step=64,
tooltip="Custom height for image. Value is working only if `size_preset` is set to `Custom`",
),
comfy_io.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
step=1,
display_mode=comfy_io.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed to use for generation",
optional=True,
),
comfy_io.Float.Input(
"guidance_scale",
default=2.5,
min=1.0,
max=10.0,
step=0.01,
display_mode=comfy_io.NumberDisplay.number,
tooltip="Higher value makes the image follow the prompt more closely",
optional=True,
),
comfy_io.Boolean.Input(
"watermark",
default=True,
tooltip="Whether to add an \"AI generated\" watermark to the image",
optional=True,
),
],
outputs=[
comfy_io.Image.Output(),
],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
model: str,
prompt: str,
size_preset: str,
width: int,
height: int,
seed: int,
guidance_scale: float,
watermark: bool,
) -> comfy_io.NodeOutput:
validate_string(prompt, strip_whitespace=True, min_length=1)
w = h = None
for label, tw, th in RECOMMENDED_PRESETS:
if label == size_preset:
w, h = tw, th
break
if w is None or h is None:
w, h = width, height
if not (512 <= w <= 2048) or not (512 <= h <= 2048):
raise ValueError(
f"Custom size out of range: {w}x{h}. "
"Both width and height must be between 512 and 2048 pixels."
)
payload = Text2ImageTaskCreationRequest(
model=model,
prompt=prompt,
size=f"{w}x{h}",
seed=seed,
guidance_scale=guidance_scale,
watermark=watermark,
)
auth_kwargs = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
response = await SynchronousOperation(
endpoint=ApiEndpoint(
path=BYTEPLUS_IMAGE_ENDPOINT,
method=HttpMethod.POST,
request_model=Text2ImageTaskCreationRequest,
response_model=ImageTaskCreationResponse,
),
request=payload,
auth_kwargs=auth_kwargs,
).execute()
return comfy_io.NodeOutput(await download_url_to_image_tensor(get_image_url_from_response(response)))
class ByteDanceImageEditNode(comfy_io.ComfyNode):
@classmethod
def define_schema(cls):
return comfy_io.Schema(
node_id="ByteDanceImageEditNode",
display_name="ByteDance Image Edit",
category="api node/video/ByteDance",
description="Edit images using ByteDance models via api based on prompt",
inputs=[
comfy_io.Combo.Input(
"model",
options=[model.value for model in Image2ImageModelName],
default=Image2ImageModelName.seededit_3.value,
tooltip="Model name",
),
comfy_io.Image.Input(
"image",
tooltip="The base image to edit",
),
comfy_io.String.Input(
"prompt",
multiline=True,
default="",
tooltip="Instruction to edit image",
),
comfy_io.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
step=1,
display_mode=comfy_io.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed to use for generation",
optional=True,
),
comfy_io.Float.Input(
"guidance_scale",
default=5.5,
min=1.0,
max=10.0,
step=0.01,
display_mode=comfy_io.NumberDisplay.number,
tooltip="Higher value makes the image follow the prompt more closely",
optional=True,
),
comfy_io.Boolean.Input(
"watermark",
default=True,
tooltip="Whether to add an \"AI generated\" watermark to the image",
optional=True,
),
],
outputs=[
comfy_io.Image.Output(),
],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
model: str,
image: torch.Tensor,
prompt: str,
seed: int,
guidance_scale: float,
watermark: bool,
) -> comfy_io.NodeOutput:
validate_string(prompt, strip_whitespace=True, min_length=1)
if get_number_of_images(image) != 1:
raise ValueError("Exactly one input image is required.")
validate_image_aspect_ratio_range(image, (1, 3), (3, 1))
auth_kwargs = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
source_url = (await upload_images_to_comfyapi(
image,
max_images=1,
mime_type="image/png",
auth_kwargs=auth_kwargs,
))[0]
payload = Image2ImageTaskCreationRequest(
model=model,
prompt=prompt,
image=source_url,
seed=seed,
guidance_scale=guidance_scale,
watermark=watermark,
)
response = await SynchronousOperation(
endpoint=ApiEndpoint(
path=BYTEPLUS_IMAGE_ENDPOINT,
method=HttpMethod.POST,
request_model=Image2ImageTaskCreationRequest,
response_model=ImageTaskCreationResponse,
),
request=payload,
auth_kwargs=auth_kwargs,
).execute()
return comfy_io.NodeOutput(await download_url_to_image_tensor(get_image_url_from_response(response)))
class ByteDanceTextToVideoNode(comfy_io.ComfyNode):
@classmethod
def define_schema(cls):
return comfy_io.Schema(
node_id="ByteDanceTextToVideoNode",
display_name="ByteDance Text to Video",
category="api node/video/ByteDance",
description="Generate video using ByteDance models via api based on prompt",
inputs=[
comfy_io.Combo.Input(
"model",
options=[model.value for model in Text2VideoModelName],
default=Text2VideoModelName.seedance_1_pro.value,
tooltip="Model name",
),
comfy_io.String.Input(
"prompt",
multiline=True,
tooltip="The text prompt used to generate the video.",
),
comfy_io.Combo.Input(
"resolution",
options=["480p", "720p", "1080p"],
tooltip="The resolution of the output video.",
),
comfy_io.Combo.Input(
"aspect_ratio",
options=["16:9", "4:3", "1:1", "3:4", "9:16", "21:9"],
tooltip="The aspect ratio of the output video.",
),
comfy_io.Int.Input(
"duration",
default=5,
min=3,
max=12,
step=1,
tooltip="The duration of the output video in seconds.",
display_mode=comfy_io.NumberDisplay.slider,
),
comfy_io.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
step=1,
display_mode=comfy_io.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed to use for generation.",
optional=True,
),
comfy_io.Boolean.Input(
"camera_fixed",
default=False,
tooltip="Specifies whether to fix the camera. The platform appends an instruction "
"to fix the camera to your prompt, but does not guarantee the actual effect.",
optional=True,
),
comfy_io.Boolean.Input(
"watermark",
default=True,
tooltip="Whether to add an \"AI generated\" watermark to the video.",
optional=True,
),
],
outputs=[
comfy_io.Video.Output(),
],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
model: str,
prompt: str,
resolution: str,
aspect_ratio: str,
duration: int,
seed: int,
camera_fixed: bool,
watermark: bool,
) -> comfy_io.NodeOutput:
validate_string(prompt, strip_whitespace=True, min_length=1)
raise_if_text_params(prompt, ["resolution", "ratio", "duration", "seed", "camerafixed", "watermark"])
prompt = (
f"{prompt} "
f"--resolution {resolution} "
f"--ratio {aspect_ratio} "
f"--duration {duration} "
f"--seed {seed} "
f"--camerafixed {str(camera_fixed).lower()} "
f"--watermark {str(watermark).lower()}"
)
auth_kwargs = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
return await process_video_task(
request_model=Text2VideoTaskCreationRequest,
payload=Text2VideoTaskCreationRequest(
model=model,
content=[TaskTextContent(text=prompt)],
),
auth_kwargs=auth_kwargs,
node_id=cls.hidden.unique_id,
estimated_duration=max(1, math.ceil(VIDEO_TASKS_EXECUTION_TIME[model][resolution] * (duration / 10.0))),
)
class ByteDanceImageToVideoNode(comfy_io.ComfyNode):
@classmethod
def define_schema(cls):
return comfy_io.Schema(
node_id="ByteDanceImageToVideoNode",
display_name="ByteDance Image to Video",
category="api node/video/ByteDance",
description="Generate video using ByteDance models via api based on image and prompt",
inputs=[
comfy_io.Combo.Input(
"model",
options=[model.value for model in Image2VideoModelName],
default=Image2VideoModelName.seedance_1_pro.value,
tooltip="Model name",
),
comfy_io.String.Input(
"prompt",
multiline=True,
tooltip="The text prompt used to generate the video.",
),
comfy_io.Image.Input(
"image",
tooltip="First frame to be used for the video.",
),
comfy_io.Combo.Input(
"resolution",
options=["480p", "720p", "1080p"],
tooltip="The resolution of the output video.",
),
comfy_io.Combo.Input(
"aspect_ratio",
options=["adaptive", "16:9", "4:3", "1:1", "3:4", "9:16", "21:9"],
tooltip="The aspect ratio of the output video.",
),
comfy_io.Int.Input(
"duration",
default=5,
min=3,
max=12,
step=1,
tooltip="The duration of the output video in seconds.",
display_mode=comfy_io.NumberDisplay.slider,
),
comfy_io.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
step=1,
display_mode=comfy_io.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed to use for generation.",
optional=True,
),
comfy_io.Boolean.Input(
"camera_fixed",
default=False,
tooltip="Specifies whether to fix the camera. The platform appends an instruction "
"to fix the camera to your prompt, but does not guarantee the actual effect.",
optional=True,
),
comfy_io.Boolean.Input(
"watermark",
default=True,
tooltip="Whether to add an \"AI generated\" watermark to the video.",
optional=True,
),
],
outputs=[
comfy_io.Video.Output(),
],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
model: str,
prompt: str,
image: torch.Tensor,
resolution: str,
aspect_ratio: str,
duration: int,
seed: int,
camera_fixed: bool,
watermark: bool,
) -> comfy_io.NodeOutput:
validate_string(prompt, strip_whitespace=True, min_length=1)
raise_if_text_params(prompt, ["resolution", "ratio", "duration", "seed", "camerafixed", "watermark"])
validate_image_dimensions(image, min_width=300, min_height=300, max_width=6000, max_height=6000)
validate_image_aspect_ratio_range(image, (2, 5), (5, 2), strict=False) # 0.4 to 2.5
auth_kwargs = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
image_url = (await upload_images_to_comfyapi(image, max_images=1, auth_kwargs=auth_kwargs))[0]
prompt = (
f"{prompt} "
f"--resolution {resolution} "
f"--ratio {aspect_ratio} "
f"--duration {duration} "
f"--seed {seed} "
f"--camerafixed {str(camera_fixed).lower()} "
f"--watermark {str(watermark).lower()}"
)
return await process_video_task(
request_model=Image2VideoTaskCreationRequest,
payload=Image2VideoTaskCreationRequest(
model=model,
content=[TaskTextContent(text=prompt), TaskImageContent(image_url=TaskImageContentUrl(url=image_url))],
),
auth_kwargs=auth_kwargs,
node_id=cls.hidden.unique_id,
estimated_duration=max(1, math.ceil(VIDEO_TASKS_EXECUTION_TIME[model][resolution] * (duration / 10.0))),
)
class ByteDanceFirstLastFrameNode(comfy_io.ComfyNode):
@classmethod
def define_schema(cls):
return comfy_io.Schema(
node_id="ByteDanceFirstLastFrameNode",
display_name="ByteDance First-Last-Frame to Video",
category="api node/video/ByteDance",
description="Generate video using prompt and first and last frames.",
inputs=[
comfy_io.Combo.Input(
"model",
options=[Image2VideoModelName.seedance_1_lite.value],
default=Image2VideoModelName.seedance_1_lite.value,
tooltip="Model name",
),
comfy_io.String.Input(
"prompt",
multiline=True,
tooltip="The text prompt used to generate the video.",
),
comfy_io.Image.Input(
"first_frame",
tooltip="First frame to be used for the video.",
),
comfy_io.Image.Input(
"last_frame",
tooltip="Last frame to be used for the video.",
),
comfy_io.Combo.Input(
"resolution",
options=["480p", "720p", "1080p"],
tooltip="The resolution of the output video.",
),
comfy_io.Combo.Input(
"aspect_ratio",
options=["adaptive", "16:9", "4:3", "1:1", "3:4", "9:16", "21:9"],
tooltip="The aspect ratio of the output video.",
),
comfy_io.Int.Input(
"duration",
default=5,
min=3,
max=12,
step=1,
tooltip="The duration of the output video in seconds.",
display_mode=comfy_io.NumberDisplay.slider,
),
comfy_io.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
step=1,
display_mode=comfy_io.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed to use for generation.",
optional=True,
),
comfy_io.Boolean.Input(
"camera_fixed",
default=False,
tooltip="Specifies whether to fix the camera. The platform appends an instruction "
"to fix the camera to your prompt, but does not guarantee the actual effect.",
optional=True,
),
comfy_io.Boolean.Input(
"watermark",
default=True,
tooltip="Whether to add an \"AI generated\" watermark to the video.",
optional=True,
),
],
outputs=[
comfy_io.Video.Output(),
],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
model: str,
prompt: str,
first_frame: torch.Tensor,
last_frame: torch.Tensor,
resolution: str,
aspect_ratio: str,
duration: int,
seed: int,
camera_fixed: bool,
watermark: bool,
) -> comfy_io.NodeOutput:
validate_string(prompt, strip_whitespace=True, min_length=1)
raise_if_text_params(prompt, ["resolution", "ratio", "duration", "seed", "camerafixed", "watermark"])
for i in (first_frame, last_frame):
validate_image_dimensions(i, min_width=300, min_height=300, max_width=6000, max_height=6000)
validate_image_aspect_ratio_range(i, (2, 5), (5, 2), strict=False) # 0.4 to 2.5
auth_kwargs = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
download_urls = await upload_images_to_comfyapi(
image_tensor_pair_to_batch(first_frame, last_frame),
max_images=2,
mime_type="image/png",
auth_kwargs=auth_kwargs,
)
prompt = (
f"{prompt} "
f"--resolution {resolution} "
f"--ratio {aspect_ratio} "
f"--duration {duration} "
f"--seed {seed} "
f"--camerafixed {str(camera_fixed).lower()} "
f"--watermark {str(watermark).lower()}"
)
return await process_video_task(
request_model=Image2VideoTaskCreationRequest,
payload=Image2VideoTaskCreationRequest(
model=model,
content=[
TaskTextContent(text=prompt),
TaskImageContent(image_url=TaskImageContentUrl(url=str(download_urls[0])), role="first_frame"),
TaskImageContent(image_url=TaskImageContentUrl(url=str(download_urls[1])), role="last_frame"),
],
),
auth_kwargs=auth_kwargs,
node_id=cls.hidden.unique_id,
estimated_duration=max(1, math.ceil(VIDEO_TASKS_EXECUTION_TIME[model][resolution] * (duration / 10.0))),
)
class ByteDanceImageReferenceNode(comfy_io.ComfyNode):
@classmethod
def define_schema(cls):
return comfy_io.Schema(
node_id="ByteDanceImageReferenceNode",
display_name="ByteDance Reference Images to Video",
category="api node/video/ByteDance",
description="Generate video using prompt and reference images.",
inputs=[
comfy_io.Combo.Input(
"model",
options=[Image2VideoModelName.seedance_1_lite.value],
default=Image2VideoModelName.seedance_1_lite.value,
tooltip="Model name",
),
comfy_io.String.Input(
"prompt",
multiline=True,
tooltip="The text prompt used to generate the video.",
),
comfy_io.Image.Input(
"images",
tooltip="One to four images.",
),
comfy_io.Combo.Input(
"resolution",
options=["480p", "720p"],
tooltip="The resolution of the output video.",
),
comfy_io.Combo.Input(
"aspect_ratio",
options=["adaptive", "16:9", "4:3", "1:1", "3:4", "9:16", "21:9"],
tooltip="The aspect ratio of the output video.",
),
comfy_io.Int.Input(
"duration",
default=5,
min=3,
max=12,
step=1,
tooltip="The duration of the output video in seconds.",
display_mode=comfy_io.NumberDisplay.slider,
),
comfy_io.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
step=1,
display_mode=comfy_io.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed to use for generation.",
optional=True,
),
comfy_io.Boolean.Input(
"watermark",
default=True,
tooltip="Whether to add an \"AI generated\" watermark to the video.",
optional=True,
),
],
outputs=[
comfy_io.Video.Output(),
],
hidden=[
comfy_io.Hidden.auth_token_comfy_org,
comfy_io.Hidden.api_key_comfy_org,
comfy_io.Hidden.unique_id,
],
is_api_node=True,
)
@classmethod
async def execute(
cls,
model: str,
prompt: str,
images: torch.Tensor,
resolution: str,
aspect_ratio: str,
duration: int,
seed: int,
watermark: bool,
) -> comfy_io.NodeOutput:
validate_string(prompt, strip_whitespace=True, min_length=1)
raise_if_text_params(prompt, ["resolution", "ratio", "duration", "seed", "watermark"])
for image in images:
validate_image_dimensions(image, min_width=300, min_height=300, max_width=6000, max_height=6000)
validate_image_aspect_ratio_range(image, (2, 5), (5, 2), strict=False) # 0.4 to 2.5
auth_kwargs = {
"auth_token": cls.hidden.auth_token_comfy_org,
"comfy_api_key": cls.hidden.api_key_comfy_org,
}
image_urls = await upload_images_to_comfyapi(
images, max_images=4, mime_type="image/png", auth_kwargs=auth_kwargs
)
prompt = (
f"{prompt} "
f"--resolution {resolution} "
f"--ratio {aspect_ratio} "
f"--duration {duration} "
f"--seed {seed} "
f"--watermark {str(watermark).lower()}"
)
x = [
TaskTextContent(text=prompt),
*[TaskImageContent(image_url=TaskImageContentUrl(url=str(i)), role="reference_image") for i in image_urls]
]
return await process_video_task(
request_model=Image2VideoTaskCreationRequest,
payload=Image2VideoTaskCreationRequest(
model=model,
content=x,
),
auth_kwargs=auth_kwargs,
node_id=cls.hidden.unique_id,
estimated_duration=max(1, math.ceil(VIDEO_TASKS_EXECUTION_TIME[model][resolution] * (duration / 10.0))),
)
async def process_video_task(
request_model: Type[T],
payload: Union[Text2VideoTaskCreationRequest, Image2VideoTaskCreationRequest],
auth_kwargs: dict,
node_id: str,
estimated_duration: int | None,
) -> comfy_io.NodeOutput:
initial_response = await SynchronousOperation(
endpoint=ApiEndpoint(
path=BYTEPLUS_TASK_ENDPOINT,
method=HttpMethod.POST,
request_model=request_model,
response_model=TaskCreationResponse,
),
request=payload,
auth_kwargs=auth_kwargs,
).execute()
response = await poll_until_finished(
auth_kwargs,
initial_response.id,
estimated_duration=estimated_duration,
node_id=node_id,
)
return comfy_io.NodeOutput(await download_url_to_video_output(get_video_url_from_task_status(response)))
def raise_if_text_params(prompt: str, text_params: list[str]) -> None:
for i in text_params:
if f"--{i} " in prompt:
raise ValueError(
f"--{i} is not allowed in the prompt, use the appropriated widget input to change this value."
)
class ByteDanceExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[comfy_io.ComfyNode]]:
return [
ByteDanceImageNode,
ByteDanceImageEditNode,
ByteDanceTextToVideoNode,
ByteDanceImageToVideoNode,
ByteDanceFirstLastFrameNode,
ByteDanceImageReferenceNode,
]
async def comfy_entrypoint() -> ByteDanceExtension:
return ByteDanceExtension()