mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-07-27 08:16:44 +00:00
113 lines
4.4 KiB
Python
113 lines
4.4 KiB
Python
from __future__ import annotations
|
|
|
|
import math
|
|
|
|
import torch
|
|
|
|
import comfy.model_management
|
|
import comfy.sampler_helpers
|
|
import comfy.samplers
|
|
import comfy.utils
|
|
import node_helpers
|
|
from comfy_api.v3 import io
|
|
|
|
|
|
def perp_neg(x, noise_pred_pos, noise_pred_neg, noise_pred_nocond, neg_scale, cond_scale):
|
|
pos = noise_pred_pos - noise_pred_nocond
|
|
neg = noise_pred_neg - noise_pred_nocond
|
|
|
|
perp = neg - ((torch.mul(neg, pos).sum())/(torch.norm(pos)**2)) * pos
|
|
perp_neg = perp * neg_scale
|
|
return noise_pred_nocond + cond_scale*(pos - perp_neg)
|
|
|
|
|
|
class Guider_PerpNeg(comfy.samplers.CFGGuider):
|
|
def set_conds(self, positive, negative, empty_negative_prompt):
|
|
empty_negative_prompt = node_helpers.conditioning_set_values(empty_negative_prompt, {"prompt_type": "negative"})
|
|
self.inner_set_conds({"positive": positive, "empty_negative_prompt": empty_negative_prompt, "negative": negative})
|
|
|
|
def set_cfg(self, cfg, neg_scale):
|
|
self.cfg = cfg
|
|
self.neg_scale = neg_scale
|
|
|
|
def predict_noise(self, x, timestep, model_options={}, seed=None):
|
|
# in CFGGuider.predict_noise, we call sampling_function(), which uses cfg_function() to compute pos & neg
|
|
# but we'd rather do a single batch of sampling pos, neg, and empty, so we call calc_cond_batch([pos,neg,empty]) directly
|
|
|
|
positive_cond = self.conds.get("positive", None)
|
|
negative_cond = self.conds.get("negative", None)
|
|
empty_cond = self.conds.get("empty_negative_prompt", None)
|
|
|
|
if not model_options.get("disable_cfg1_optimization", False):
|
|
if math.isclose(self.neg_scale, 0.0):
|
|
negative_cond = None
|
|
if math.isclose(self.cfg, 1.0):
|
|
empty_cond = None
|
|
|
|
conds = [positive_cond, negative_cond, empty_cond]
|
|
|
|
out = comfy.samplers.calc_cond_batch(self.inner_model, conds, x, timestep, model_options)
|
|
|
|
# Apply pre_cfg_functions since sampling_function() is skipped
|
|
for fn in model_options.get("sampler_pre_cfg_function", []):
|
|
args = {"conds":conds, "conds_out": out, "cond_scale": self.cfg, "timestep": timestep,
|
|
"input": x, "sigma": timestep, "model": self.inner_model, "model_options": model_options}
|
|
out = fn(args)
|
|
|
|
noise_pred_pos, noise_pred_neg, noise_pred_empty = out
|
|
cfg_result = perp_neg(x, noise_pred_pos, noise_pred_neg, noise_pred_empty, self.neg_scale, self.cfg)
|
|
|
|
# normally this would be done in cfg_function, but we skipped
|
|
# that for efficiency: we can compute the noise predictions in
|
|
# a single call to calc_cond_batch() (rather than two)
|
|
# so we replicate the hook here
|
|
for fn in model_options.get("sampler_post_cfg_function", []):
|
|
args = {
|
|
"denoised": cfg_result,
|
|
"cond": positive_cond,
|
|
"uncond": negative_cond,
|
|
"cond_scale": self.cfg,
|
|
"model": self.inner_model,
|
|
"uncond_denoised": noise_pred_neg,
|
|
"cond_denoised": noise_pred_pos,
|
|
"sigma": timestep,
|
|
"model_options": model_options,
|
|
"input": x,
|
|
# not in the original call in samplers.py:cfg_function, but made available for future hooks
|
|
"empty_cond": empty_cond,
|
|
"empty_cond_denoised": noise_pred_empty,}
|
|
cfg_result = fn(args)
|
|
|
|
return cfg_result
|
|
|
|
|
|
class PerpNegGuider(io.ComfyNode):
|
|
@classmethod
|
|
def define_schema(cls):
|
|
return io.Schema(
|
|
node_id="PerpNegGuider_V3",
|
|
category="_for_testing",
|
|
inputs=[
|
|
io.Model.Input("model"),
|
|
io.Conditioning.Input("positive"),
|
|
io.Conditioning.Input("negative"),
|
|
io.Conditioning.Input("empty_conditioning"),
|
|
io.Float.Input("cfg", default=8.0, min=0.0, max=100.0, step=0.1, round=0.01),
|
|
io.Float.Input("neg_scale", default=1.0, min=0.0, max=100.0, step=0.01),
|
|
],
|
|
outputs=[
|
|
io.Guider.Output(),
|
|
],
|
|
is_experimental=True,
|
|
)
|
|
|
|
@classmethod
|
|
def execute(cls, model, positive, negative, empty_conditioning, cfg, neg_scale):
|
|
guider = Guider_PerpNeg(model)
|
|
guider.set_conds(positive, negative, empty_conditioning)
|
|
guider.set_cfg(cfg, neg_scale)
|
|
return io.NodeOutput(guider)
|
|
|
|
|
|
NODES_LIST = [PerpNegGuider]
|