ComfyUI/comfy_extras/v3/nodes_cfg.py

90 lines
2.7 KiB
Python

from __future__ import annotations
import torch
from comfy_api.latest import io
# https://github.com/WeichenFan/CFG-Zero-star
def optimized_scale(positive, negative):
positive_flat = positive.reshape(positive.shape[0], -1)
negative_flat = negative.reshape(negative.shape[0], -1)
# Calculate dot production
dot_product = torch.sum(positive_flat * negative_flat, dim=1, keepdim=True)
# Squared norm of uncondition
squared_norm = torch.sum(negative_flat ** 2, dim=1, keepdim=True) + 1e-8
# st_star = v_cond^T * v_uncond / ||v_uncond||^2
st_star = dot_product / squared_norm
return st_star.reshape([positive.shape[0]] + [1] * (positive.ndim - 1))
class CFGZeroStar(io.ComfyNode):
@classmethod
def define_schema(cls) -> io.Schema:
return io.Schema(
node_id="CFGZeroStar_V3",
category="advanced/guidance",
inputs=[
io.Model.Input("model"),
],
outputs=[io.Model.Output(display_name="patched_model")],
)
@classmethod
def execute(cls, model) -> io.NodeOutput:
m = model.clone()
def cfg_zero_star(args):
guidance_scale = args['cond_scale']
x = args['input']
cond_p = args['cond_denoised']
uncond_p = args['uncond_denoised']
out = args["denoised"]
alpha = optimized_scale(x - cond_p, x - uncond_p)
return out + uncond_p * (alpha - 1.0) + guidance_scale * uncond_p * (1.0 - alpha)
m.set_model_sampler_post_cfg_function(cfg_zero_star)
return io.NodeOutput(m)
class CFGNorm(io.ComfyNode):
@classmethod
def define_schema(cls) -> io.Schema:
return io.Schema(
node_id="CFGNorm_V3",
category="advanced/guidance",
inputs=[
io.Model.Input("model"),
io.Float.Input("strength", default=1.0, min=0.0, max=100.0, step=0.01),
],
outputs=[io.Model.Output(display_name="patched_model")],
is_experimental=True,
)
@classmethod
def execute(cls, model, strength) -> io.NodeOutput:
m = model.clone()
def cfg_norm(args):
cond_p = args['cond_denoised']
pred_text_ = args["denoised"]
norm_full_cond = torch.norm(cond_p, dim=1, keepdim=True)
norm_pred_text = torch.norm(pred_text_, dim=1, keepdim=True)
scale = (norm_full_cond / (norm_pred_text + 1e-8)).clamp(min=0.0, max=1.0)
return pred_text_ * scale * strength
m.set_model_sampler_post_cfg_function(cfg_norm)
return io.NodeOutput(m)
NODES_LIST: list[type[io.ComfyNode]] = [
CFGNorm,
CFGZeroStar,
]