ComfyUI/comfy_extras/v3/nodes_align_your_steps.py

85 lines
2.2 KiB
Python

# from: https://research.nvidia.com/labs/toronto-ai/AlignYourSteps/howto.html
import numpy as np
import torch
from comfy_api.latest import io
def loglinear_interp(t_steps, num_steps):
"""Performs log-linear interpolation of a given array of decreasing numbers."""
xs = np.linspace(0, 1, len(t_steps))
ys = np.log(t_steps[::-1])
new_xs = np.linspace(0, 1, num_steps)
new_ys = np.interp(new_xs, xs, ys)
return np.exp(new_ys)[::-1].copy()
NOISE_LEVELS = {
"SD1": [
14.6146412293,
6.4745760956,
3.8636745985,
2.6946151520,
1.8841921177,
1.3943805092,
0.9642583904,
0.6523686016,
0.3977456272,
0.1515232662,
0.0291671582,
],
"SDXL": [
14.6146412293,
6.3184485287,
3.7681790315,
2.1811480769,
1.3405244945,
0.8620721141,
0.5550693289,
0.3798540708,
0.2332364134,
0.1114188177,
0.0291671582,
],
"SVD": [700.00, 54.5, 15.886, 7.977, 4.248, 1.789, 0.981, 0.403, 0.173, 0.034, 0.002],
}
class AlignYourStepsScheduler(io.ComfyNode):
@classmethod
def define_schema(cls) -> io.Schema:
return io.Schema(
node_id="AlignYourStepsScheduler_V3",
category="sampling/custom_sampling/schedulers",
inputs=[
io.Combo.Input("model_type", options=["SD1", "SDXL", "SVD"]),
io.Int.Input("steps", default=10, min=1, max=10000),
io.Float.Input("denoise", default=1.0, min=0.0, max=1.0, step=0.01),
],
outputs=[io.Sigmas.Output()],
)
@classmethod
def execute(cls, model_type, steps, denoise) -> io.NodeOutput:
total_steps = steps
if denoise < 1.0:
if denoise <= 0.0:
return io.NodeOutput(torch.FloatTensor([]))
total_steps = round(steps * denoise)
sigmas = NOISE_LEVELS[model_type][:]
if (steps + 1) != len(sigmas):
sigmas = loglinear_interp(sigmas, steps + 1)
sigmas = sigmas[-(total_steps + 1) :]
sigmas[-1] = 0
return io.NodeOutput(torch.FloatTensor(sigmas))
NODES_LIST: list[type[io.ComfyNode]] = [
AlignYourStepsScheduler,
]