mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-07-27 16:26:39 +00:00
52 lines
1.6 KiB
Python
52 lines
1.6 KiB
Python
from __future__ import annotations
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
from comfy_api.latest import io
|
|
|
|
|
|
class Mahiro(io.ComfyNode):
|
|
@classmethod
|
|
def define_schema(cls):
|
|
return io.Schema(
|
|
node_id="Mahiro_V3",
|
|
display_name="Mahiro is so cute that she deserves a better guidance function!! (。・ω・。) _V3",
|
|
category="_for_testing",
|
|
description="Modify the guidance to scale more on the 'direction' of the positive prompt rather than the difference between the negative prompt.",
|
|
is_experimental=True,
|
|
inputs=[
|
|
io.Model.Input("model")
|
|
],
|
|
outputs=[
|
|
io.Model.Output(display_name="patched_model")
|
|
]
|
|
)
|
|
|
|
@classmethod
|
|
def execute(cls, model):
|
|
m = model.clone()
|
|
def mahiro_normd(args):
|
|
scale: float = args['cond_scale']
|
|
cond_p: torch.Tensor = args['cond_denoised']
|
|
uncond_p: torch.Tensor = args['uncond_denoised']
|
|
#naive leap
|
|
leap = cond_p * scale
|
|
#sim with uncond leap
|
|
u_leap = uncond_p * scale
|
|
cfg = args["denoised"]
|
|
merge = (leap + cfg) / 2
|
|
normu = torch.sqrt(u_leap.abs()) * u_leap.sign()
|
|
normm = torch.sqrt(merge.abs()) * merge.sign()
|
|
sim = F.cosine_similarity(normu, normm).mean()
|
|
simsc = 2 * (sim+1)
|
|
wm = (simsc*cfg + (4-simsc)*leap) / 4
|
|
return wm
|
|
m.set_model_sampler_post_cfg_function(mahiro_normd)
|
|
return io.NodeOutput(m)
|
|
|
|
|
|
NODES_LIST = [
|
|
Mahiro,
|
|
]
|