Files
ComfyUI/comfy_extras/nodes_wan.py

1064 lines
49 KiB
Python

import math
import nodes
import node_helpers
import torch
import comfy.model_management
import comfy.utils
import comfy.latent_formats
import comfy.clip_vision
import json
import numpy as np
from typing import Tuple
from typing_extensions import override
from comfy_api.latest import ComfyExtension, io
class WanImageToVideo(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="WanImageToVideo",
category="conditioning/video_models",
inputs=[
io.Conditioning.Input("positive"),
io.Conditioning.Input("negative"),
io.Vae.Input("vae"),
io.Int.Input("width", default=832, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("length", default=81, min=1, max=nodes.MAX_RESOLUTION, step=4),
io.Int.Input("batch_size", default=1, min=1, max=4096),
io.ClipVisionOutput.Input("clip_vision_output", optional=True),
io.Image.Input("start_image", optional=True),
],
outputs=[
io.Conditioning.Output(display_name="positive"),
io.Conditioning.Output(display_name="negative"),
io.Latent.Output(display_name="latent"),
],
)
@classmethod
def execute(cls, positive, negative, vae, width, height, length, batch_size, start_image=None, clip_vision_output=None) -> io.NodeOutput:
latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
if start_image is not None:
start_image = comfy.utils.common_upscale(start_image[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
image = torch.ones((length, height, width, start_image.shape[-1]), device=start_image.device, dtype=start_image.dtype) * 0.5
image[:start_image.shape[0]] = start_image
concat_latent_image = vae.encode(image[:, :, :, :3])
mask = torch.ones((1, 1, latent.shape[2], concat_latent_image.shape[-2], concat_latent_image.shape[-1]), device=start_image.device, dtype=start_image.dtype)
mask[:, :, :((start_image.shape[0] - 1) // 4) + 1] = 0.0
positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": concat_latent_image, "concat_mask": mask})
negative = node_helpers.conditioning_set_values(negative, {"concat_latent_image": concat_latent_image, "concat_mask": mask})
if clip_vision_output is not None:
positive = node_helpers.conditioning_set_values(positive, {"clip_vision_output": clip_vision_output})
negative = node_helpers.conditioning_set_values(negative, {"clip_vision_output": clip_vision_output})
out_latent = {}
out_latent["samples"] = latent
return io.NodeOutput(positive, negative, out_latent)
class WanFunControlToVideo(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="WanFunControlToVideo",
category="conditioning/video_models",
inputs=[
io.Conditioning.Input("positive"),
io.Conditioning.Input("negative"),
io.Vae.Input("vae"),
io.Int.Input("width", default=832, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("length", default=81, min=1, max=nodes.MAX_RESOLUTION, step=4),
io.Int.Input("batch_size", default=1, min=1, max=4096),
io.ClipVisionOutput.Input("clip_vision_output", optional=True),
io.Image.Input("start_image", optional=True),
io.Image.Input("control_video", optional=True),
],
outputs=[
io.Conditioning.Output(display_name="positive"),
io.Conditioning.Output(display_name="negative"),
io.Latent.Output(display_name="latent"),
],
)
@classmethod
def execute(cls, positive, negative, vae, width, height, length, batch_size, start_image=None, clip_vision_output=None, control_video=None) -> io.NodeOutput:
latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
concat_latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
concat_latent = comfy.latent_formats.Wan21().process_out(concat_latent)
concat_latent = concat_latent.repeat(1, 2, 1, 1, 1)
if start_image is not None:
start_image = comfy.utils.common_upscale(start_image[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
concat_latent_image = vae.encode(start_image[:, :, :, :3])
concat_latent[:,16:,:concat_latent_image.shape[2]] = concat_latent_image[:,:,:concat_latent.shape[2]]
if control_video is not None:
control_video = comfy.utils.common_upscale(control_video[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
concat_latent_image = vae.encode(control_video[:, :, :, :3])
concat_latent[:,:16,:concat_latent_image.shape[2]] = concat_latent_image[:,:,:concat_latent.shape[2]]
positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": concat_latent})
negative = node_helpers.conditioning_set_values(negative, {"concat_latent_image": concat_latent})
if clip_vision_output is not None:
positive = node_helpers.conditioning_set_values(positive, {"clip_vision_output": clip_vision_output})
negative = node_helpers.conditioning_set_values(negative, {"clip_vision_output": clip_vision_output})
out_latent = {}
out_latent["samples"] = latent
return io.NodeOutput(positive, negative, out_latent)
class Wan22FunControlToVideo(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="Wan22FunControlToVideo",
category="conditioning/video_models",
inputs=[
io.Conditioning.Input("positive"),
io.Conditioning.Input("negative"),
io.Vae.Input("vae"),
io.Int.Input("width", default=832, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("length", default=81, min=1, max=nodes.MAX_RESOLUTION, step=4),
io.Int.Input("batch_size", default=1, min=1, max=4096),
io.Image.Input("ref_image", optional=True),
io.Image.Input("control_video", optional=True),
],
outputs=[
io.Conditioning.Output(display_name="positive"),
io.Conditioning.Output(display_name="negative"),
io.Latent.Output(display_name="latent"),
],
)
@classmethod
def execute(cls, positive, negative, vae, width, height, length, batch_size, ref_image=None, start_image=None, control_video=None) -> io.NodeOutput:
latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
concat_latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
concat_latent = comfy.latent_formats.Wan21().process_out(concat_latent)
concat_latent = concat_latent.repeat(1, 2, 1, 1, 1)
mask = torch.ones((1, 1, latent.shape[2] * 4, latent.shape[-2], latent.shape[-1]))
if start_image is not None:
start_image = comfy.utils.common_upscale(start_image[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
concat_latent_image = vae.encode(start_image[:, :, :, :3])
concat_latent[:,16:,:concat_latent_image.shape[2]] = concat_latent_image[:,:,:concat_latent.shape[2]]
mask[:, :, :start_image.shape[0] + 3] = 0.0
ref_latent = None
if ref_image is not None:
ref_image = comfy.utils.common_upscale(ref_image[:1].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
ref_latent = vae.encode(ref_image[:, :, :, :3])
if control_video is not None:
control_video = comfy.utils.common_upscale(control_video[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
concat_latent_image = vae.encode(control_video[:, :, :, :3])
concat_latent[:,:16,:concat_latent_image.shape[2]] = concat_latent_image[:,:,:concat_latent.shape[2]]
mask = mask.view(1, mask.shape[2] // 4, 4, mask.shape[3], mask.shape[4]).transpose(1, 2)
positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": concat_latent, "concat_mask": mask, "concat_mask_index": 16})
negative = node_helpers.conditioning_set_values(negative, {"concat_latent_image": concat_latent, "concat_mask": mask, "concat_mask_index": 16})
if ref_latent is not None:
positive = node_helpers.conditioning_set_values(positive, {"reference_latents": [ref_latent]}, append=True)
negative = node_helpers.conditioning_set_values(negative, {"reference_latents": [ref_latent]}, append=True)
out_latent = {}
out_latent["samples"] = latent
return io.NodeOutput(positive, negative, out_latent)
class WanFirstLastFrameToVideo(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="WanFirstLastFrameToVideo",
category="conditioning/video_models",
inputs=[
io.Conditioning.Input("positive"),
io.Conditioning.Input("negative"),
io.Vae.Input("vae"),
io.Int.Input("width", default=832, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("length", default=81, min=1, max=nodes.MAX_RESOLUTION, step=4),
io.Int.Input("batch_size", default=1, min=1, max=4096),
io.ClipVisionOutput.Input("clip_vision_start_image", optional=True),
io.ClipVisionOutput.Input("clip_vision_end_image", optional=True),
io.Image.Input("start_image", optional=True),
io.Image.Input("end_image", optional=True),
],
outputs=[
io.Conditioning.Output(display_name="positive"),
io.Conditioning.Output(display_name="negative"),
io.Latent.Output(display_name="latent"),
],
)
@classmethod
def execute(cls, positive, negative, vae, width, height, length, batch_size, start_image=None, end_image=None, clip_vision_start_image=None, clip_vision_end_image=None) -> io.NodeOutput:
latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
if start_image is not None:
start_image = comfy.utils.common_upscale(start_image[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
if end_image is not None:
end_image = comfy.utils.common_upscale(end_image[-length:].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
image = torch.ones((length, height, width, 3)) * 0.5
mask = torch.ones((1, 1, latent.shape[2] * 4, latent.shape[-2], latent.shape[-1]))
if start_image is not None:
image[:start_image.shape[0]] = start_image
mask[:, :, :start_image.shape[0] + 3] = 0.0
if end_image is not None:
image[-end_image.shape[0]:] = end_image
mask[:, :, -end_image.shape[0]:] = 0.0
concat_latent_image = vae.encode(image[:, :, :, :3])
mask = mask.view(1, mask.shape[2] // 4, 4, mask.shape[3], mask.shape[4]).transpose(1, 2)
positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": concat_latent_image, "concat_mask": mask})
negative = node_helpers.conditioning_set_values(negative, {"concat_latent_image": concat_latent_image, "concat_mask": mask})
clip_vision_output = None
if clip_vision_start_image is not None:
clip_vision_output = clip_vision_start_image
if clip_vision_end_image is not None:
if clip_vision_output is not None:
states = torch.cat([clip_vision_output.penultimate_hidden_states, clip_vision_end_image.penultimate_hidden_states], dim=-2)
clip_vision_output = comfy.clip_vision.Output()
clip_vision_output.penultimate_hidden_states = states
else:
clip_vision_output = clip_vision_end_image
if clip_vision_output is not None:
positive = node_helpers.conditioning_set_values(positive, {"clip_vision_output": clip_vision_output})
negative = node_helpers.conditioning_set_values(negative, {"clip_vision_output": clip_vision_output})
out_latent = {}
out_latent["samples"] = latent
return io.NodeOutput(positive, negative, out_latent)
class WanFunInpaintToVideo(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="WanFunInpaintToVideo",
category="conditioning/video_models",
inputs=[
io.Conditioning.Input("positive"),
io.Conditioning.Input("negative"),
io.Vae.Input("vae"),
io.Int.Input("width", default=832, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("length", default=81, min=1, max=nodes.MAX_RESOLUTION, step=4),
io.Int.Input("batch_size", default=1, min=1, max=4096),
io.ClipVisionOutput.Input("clip_vision_output", optional=True),
io.Image.Input("start_image", optional=True),
io.Image.Input("end_image", optional=True),
],
outputs=[
io.Conditioning.Output(display_name="positive"),
io.Conditioning.Output(display_name="negative"),
io.Latent.Output(display_name="latent"),
],
)
@classmethod
def execute(cls, positive, negative, vae, width, height, length, batch_size, start_image=None, end_image=None, clip_vision_output=None) -> io.NodeOutput:
flfv = WanFirstLastFrameToVideo()
return flfv.execute(positive, negative, vae, width, height, length, batch_size, start_image=start_image, end_image=end_image, clip_vision_start_image=clip_vision_output)
class WanVaceToVideo(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="WanVaceToVideo",
category="conditioning/video_models",
is_experimental=True,
inputs=[
io.Conditioning.Input("positive"),
io.Conditioning.Input("negative"),
io.Vae.Input("vae"),
io.Int.Input("width", default=832, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("length", default=81, min=1, max=nodes.MAX_RESOLUTION, step=4),
io.Int.Input("batch_size", default=1, min=1, max=4096),
io.Float.Input("strength", default=1.0, min=0.0, max=1000.0, step=0.01),
io.Image.Input("control_video", optional=True),
io.Mask.Input("control_masks", optional=True),
io.Image.Input("reference_image", optional=True),
],
outputs=[
io.Conditioning.Output(display_name="positive"),
io.Conditioning.Output(display_name="negative"),
io.Latent.Output(display_name="latent"),
io.Int.Output(display_name="trim_latent"),
],
)
@classmethod
def execute(cls, positive, negative, vae, width, height, length, batch_size, strength, control_video=None, control_masks=None, reference_image=None) -> io.NodeOutput:
latent_length = ((length - 1) // 4) + 1
if control_video is not None:
control_video = comfy.utils.common_upscale(control_video[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
if control_video.shape[0] < length:
control_video = torch.nn.functional.pad(control_video, (0, 0, 0, 0, 0, 0, 0, length - control_video.shape[0]), value=0.5)
else:
control_video = torch.ones((length, height, width, 3)) * 0.5
if reference_image is not None:
reference_image = comfy.utils.common_upscale(reference_image[:1].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
reference_image = vae.encode(reference_image[:, :, :, :3])
reference_image = torch.cat([reference_image, comfy.latent_formats.Wan21().process_out(torch.zeros_like(reference_image))], dim=1)
if control_masks is None:
mask = torch.ones((length, height, width, 1))
else:
mask = control_masks
if mask.ndim == 3:
mask = mask.unsqueeze(1)
mask = comfy.utils.common_upscale(mask[:length], width, height, "bilinear", "center").movedim(1, -1)
if mask.shape[0] < length:
mask = torch.nn.functional.pad(mask, (0, 0, 0, 0, 0, 0, 0, length - mask.shape[0]), value=1.0)
control_video = control_video - 0.5
inactive = (control_video * (1 - mask)) + 0.5
reactive = (control_video * mask) + 0.5
inactive = vae.encode(inactive[:, :, :, :3])
reactive = vae.encode(reactive[:, :, :, :3])
control_video_latent = torch.cat((inactive, reactive), dim=1)
if reference_image is not None:
control_video_latent = torch.cat((reference_image, control_video_latent), dim=2)
vae_stride = 8
height_mask = height // vae_stride
width_mask = width // vae_stride
mask = mask.view(length, height_mask, vae_stride, width_mask, vae_stride)
mask = mask.permute(2, 4, 0, 1, 3)
mask = mask.reshape(vae_stride * vae_stride, length, height_mask, width_mask)
mask = torch.nn.functional.interpolate(mask.unsqueeze(0), size=(latent_length, height_mask, width_mask), mode='nearest-exact').squeeze(0)
trim_latent = 0
if reference_image is not None:
mask_pad = torch.zeros_like(mask[:, :reference_image.shape[2], :, :])
mask = torch.cat((mask_pad, mask), dim=1)
latent_length += reference_image.shape[2]
trim_latent = reference_image.shape[2]
mask = mask.unsqueeze(0)
positive = node_helpers.conditioning_set_values(positive, {"vace_frames": [control_video_latent], "vace_mask": [mask], "vace_strength": [strength]}, append=True)
negative = node_helpers.conditioning_set_values(negative, {"vace_frames": [control_video_latent], "vace_mask": [mask], "vace_strength": [strength]}, append=True)
latent = torch.zeros([batch_size, 16, latent_length, height // 8, width // 8], device=comfy.model_management.intermediate_device())
out_latent = {}
out_latent["samples"] = latent
return io.NodeOutput(positive, negative, out_latent, trim_latent)
class TrimVideoLatent(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="TrimVideoLatent",
category="latent/video",
is_experimental=True,
inputs=[
io.Latent.Input("samples"),
io.Int.Input("trim_amount", default=0, min=0, max=99999),
],
outputs=[
io.Latent.Output(),
],
)
@classmethod
def execute(cls, samples, trim_amount) -> io.NodeOutput:
samples_out = samples.copy()
s1 = samples["samples"]
samples_out["samples"] = s1[:, :, trim_amount:]
return io.NodeOutput(samples_out)
class WanCameraImageToVideo(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="WanCameraImageToVideo",
category="conditioning/video_models",
inputs=[
io.Conditioning.Input("positive"),
io.Conditioning.Input("negative"),
io.Vae.Input("vae"),
io.Int.Input("width", default=832, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("length", default=81, min=1, max=nodes.MAX_RESOLUTION, step=4),
io.Int.Input("batch_size", default=1, min=1, max=4096),
io.ClipVisionOutput.Input("clip_vision_output", optional=True),
io.Image.Input("start_image", optional=True),
io.WanCameraEmbedding.Input("camera_conditions", optional=True),
],
outputs=[
io.Conditioning.Output(display_name="positive"),
io.Conditioning.Output(display_name="negative"),
io.Latent.Output(display_name="latent"),
],
)
@classmethod
def execute(cls, positive, negative, vae, width, height, length, batch_size, start_image=None, clip_vision_output=None, camera_conditions=None) -> io.NodeOutput:
latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
concat_latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
concat_latent = comfy.latent_formats.Wan21().process_out(concat_latent)
if start_image is not None:
start_image = comfy.utils.common_upscale(start_image[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
concat_latent_image = vae.encode(start_image[:, :, :, :3])
concat_latent[:,:,:concat_latent_image.shape[2]] = concat_latent_image[:,:,:concat_latent.shape[2]]
mask = torch.ones((1, 1, latent.shape[2] * 4, latent.shape[-2], latent.shape[-1]))
mask[:, :, :start_image.shape[0] + 3] = 0.0
mask = mask.view(1, mask.shape[2] // 4, 4, mask.shape[3], mask.shape[4]).transpose(1, 2)
positive = node_helpers.conditioning_set_values(positive, {"concat_latent_image": concat_latent, "concat_mask": mask})
negative = node_helpers.conditioning_set_values(negative, {"concat_latent_image": concat_latent, "concat_mask": mask})
if camera_conditions is not None:
positive = node_helpers.conditioning_set_values(positive, {'camera_conditions': camera_conditions})
negative = node_helpers.conditioning_set_values(negative, {'camera_conditions': camera_conditions})
if clip_vision_output is not None:
positive = node_helpers.conditioning_set_values(positive, {"clip_vision_output": clip_vision_output})
negative = node_helpers.conditioning_set_values(negative, {"clip_vision_output": clip_vision_output})
out_latent = {}
out_latent["samples"] = latent
return io.NodeOutput(positive, negative, out_latent)
class WanPhantomSubjectToVideo(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="WanPhantomSubjectToVideo",
category="conditioning/video_models",
inputs=[
io.Conditioning.Input("positive"),
io.Conditioning.Input("negative"),
io.Vae.Input("vae"),
io.Int.Input("width", default=832, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("length", default=81, min=1, max=nodes.MAX_RESOLUTION, step=4),
io.Int.Input("batch_size", default=1, min=1, max=4096),
io.Image.Input("images", optional=True),
],
outputs=[
io.Conditioning.Output(display_name="positive"),
io.Conditioning.Output(display_name="negative_text"),
io.Conditioning.Output(display_name="negative_img_text"),
io.Latent.Output(display_name="latent"),
],
)
@classmethod
def execute(cls, positive, negative, vae, width, height, length, batch_size, images) -> io.NodeOutput:
latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device())
cond2 = negative
if images is not None:
images = comfy.utils.common_upscale(images[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
latent_images = []
for i in images:
latent_images += [vae.encode(i.unsqueeze(0)[:, :, :, :3])]
concat_latent_image = torch.cat(latent_images, dim=2)
positive = node_helpers.conditioning_set_values(positive, {"time_dim_concat": concat_latent_image})
cond2 = node_helpers.conditioning_set_values(negative, {"time_dim_concat": concat_latent_image})
negative = node_helpers.conditioning_set_values(negative, {"time_dim_concat": comfy.latent_formats.Wan21().process_out(torch.zeros_like(concat_latent_image))})
out_latent = {}
out_latent["samples"] = latent
return io.NodeOutput(positive, cond2, negative, out_latent)
def parse_json_tracks(tracks):
"""Parse JSON track data into a standardized format"""
tracks_data = []
try:
# If tracks is a string, try to parse it as JSON
if isinstance(tracks, str):
parsed = json.loads(tracks.replace("'", '"'))
tracks_data.extend(parsed)
else:
# If tracks is a list of strings, parse each one
for track_str in tracks:
parsed = json.loads(track_str.replace("'", '"'))
tracks_data.append(parsed)
# Check if we have a single track (dict with x,y) or a list of tracks
if tracks_data and isinstance(tracks_data[0], dict) and 'x' in tracks_data[0]:
# Single track detected, wrap it in a list
tracks_data = [tracks_data]
elif tracks_data and isinstance(tracks_data[0], list) and tracks_data[0] and isinstance(tracks_data[0][0], dict) and 'x' in tracks_data[0][0]:
# Already a list of tracks, nothing to do
pass
else:
# Unexpected format
pass
except json.JSONDecodeError:
tracks_data = []
return tracks_data
def process_tracks(tracks_np: np.ndarray, frame_size: Tuple[int, int], num_frames, quant_multi: int = 8, **kwargs):
# tracks: shape [t, h, w, 3] => samples align with 24 fps, model trained with 16 fps.
# frame_size: tuple (W, H)
tracks = torch.from_numpy(tracks_np).float()
if tracks.shape[1] == 121:
tracks = torch.permute(tracks, (1, 0, 2, 3))
tracks, visibles = tracks[..., :2], tracks[..., 2:3]
short_edge = min(*frame_size)
frame_center = torch.tensor([*frame_size]).type_as(tracks) / 2
tracks = tracks - frame_center
tracks = tracks / short_edge * 2
visibles = visibles * 2 - 1
trange = torch.linspace(-1, 1, tracks.shape[0]).view(-1, 1, 1, 1).expand(*visibles.shape)
out_ = torch.cat([trange, tracks, visibles], dim=-1).view(121, -1, 4)
out_0 = out_[:1]
out_l = out_[1:] # 121 => 120 | 1
a = 120 // math.gcd(120, num_frames)
b = num_frames // math.gcd(120, num_frames)
out_l = torch.repeat_interleave(out_l, b, dim=0)[1::a] # 120 => 120 * b => 120 * b / a == F
final_result = torch.cat([out_0, out_l], dim=0)
return final_result
FIXED_LENGTH = 121
def pad_pts(tr):
"""Convert list of {x,y} to (FIXED_LENGTH,1,3) array, padding/truncating."""
pts = np.array([[p['x'], p['y'], 1] for p in tr], dtype=np.float32)
n = pts.shape[0]
if n < FIXED_LENGTH:
pad = np.zeros((FIXED_LENGTH - n, 3), dtype=np.float32)
pts = np.vstack((pts, pad))
else:
pts = pts[:FIXED_LENGTH]
return pts.reshape(FIXED_LENGTH, 1, 3)
def ind_sel(target: torch.Tensor, ind: torch.Tensor, dim: int = 1):
"""Index selection utility function"""
assert (
len(ind.shape) > dim
), "Index must have the target dim, but get dim: %d, ind shape: %s" % (dim, str(ind.shape))
target = target.expand(
*tuple(
[ind.shape[k] if target.shape[k] == 1 else -1 for k in range(dim)]
+ [
-1,
]
* (len(target.shape) - dim)
)
)
ind_pad = ind
if len(target.shape) > dim + 1:
for _ in range(len(target.shape) - (dim + 1)):
ind_pad = ind_pad.unsqueeze(-1)
ind_pad = ind_pad.expand(*(-1,) * (dim + 1), *target.shape[(dim + 1) : :])
return torch.gather(target, dim=dim, index=ind_pad)
def merge_final(vert_attr: torch.Tensor, weight: torch.Tensor, vert_assign: torch.Tensor):
"""Merge vertex attributes with weights"""
target_dim = len(vert_assign.shape) - 1
if len(vert_attr.shape) == 2:
assert vert_attr.shape[0] > vert_assign.max()
new_shape = [1] * target_dim + list(vert_attr.shape)
tensor = vert_attr.reshape(new_shape)
sel_attr = ind_sel(tensor, vert_assign.type(torch.long), dim=target_dim)
else:
assert vert_attr.shape[1] > vert_assign.max()
new_shape = [vert_attr.shape[0]] + [1] * (target_dim - 1) + list(vert_attr.shape[1:])
tensor = vert_attr.reshape(new_shape)
sel_attr = ind_sel(tensor, vert_assign.type(torch.long), dim=target_dim)
final_attr = torch.sum(sel_attr * weight.unsqueeze(-1), dim=-2)
return final_attr
def _patch_motion_single(
tracks: torch.FloatTensor, # (B, T, N, 4)
vid: torch.FloatTensor, # (C, T, H, W)
temperature: float,
vae_divide: tuple,
topk: int,
):
"""Apply motion patching based on tracks"""
_, T, H, W = vid.shape
N = tracks.shape[2]
_, tracks_xy, visible = torch.split(
tracks, [1, 2, 1], dim=-1
) # (B, T, N, 2) | (B, T, N, 1)
tracks_n = tracks_xy / torch.tensor([W / min(H, W), H / min(H, W)], device=tracks_xy.device)
tracks_n = tracks_n.clamp(-1, 1)
visible = visible.clamp(0, 1)
xx = torch.linspace(-W / min(H, W), W / min(H, W), W)
yy = torch.linspace(-H / min(H, W), H / min(H, W), H)
grid = torch.stack(torch.meshgrid(yy, xx, indexing="ij")[::-1], dim=-1).to(
tracks_xy.device
)
tracks_pad = tracks_xy[:, 1:]
visible_pad = visible[:, 1:]
visible_align = visible_pad.view(T - 1, 4, *visible_pad.shape[2:]).sum(1)
tracks_align = (tracks_pad * visible_pad).view(T - 1, 4, *tracks_pad.shape[2:]).sum(
1
) / (visible_align + 1e-5)
dist_ = (
(tracks_align[:, None, None] - grid[None, :, :, None]).pow(2).sum(-1)
) # T, H, W, N
weight = torch.exp(-dist_ * temperature) * visible_align.clamp(0, 1).view(
T - 1, 1, 1, N
)
vert_weight, vert_index = torch.topk(
weight, k=min(topk, weight.shape[-1]), dim=-1
)
grid_mode = "bilinear"
point_feature = torch.nn.functional.grid_sample(
vid.permute(1, 0, 2, 3)[:1],
tracks_n[:, :1].type(vid.dtype),
mode=grid_mode,
padding_mode="zeros",
align_corners=False,
)
point_feature = point_feature.squeeze(0).squeeze(1).permute(1, 0) # N, C=16
out_feature = merge_final(point_feature, vert_weight, vert_index).permute(3, 0, 1, 2) # T - 1, H, W, C => C, T - 1, H, W
out_weight = vert_weight.sum(-1) # T - 1, H, W
# out feature -> already soft weighted
mix_feature = out_feature + vid[:, 1:] * (1 - out_weight.clamp(0, 1))
out_feature_full = torch.cat([vid[:, :1], mix_feature], dim=1) # C, T, H, W
out_mask_full = torch.cat([torch.ones_like(out_weight[:1]), out_weight], dim=0) # T, H, W
return out_mask_full[None].expand(vae_divide[0], -1, -1, -1), out_feature_full
def patch_motion(
tracks: torch.FloatTensor, # (B, TB, T, N, 4)
vid: torch.FloatTensor, # (C, T, H, W)
temperature: float = 220.0,
vae_divide: tuple = (4, 16),
topk: int = 2,
):
B = len(tracks)
# Process each batch separately
out_masks = []
out_features = []
for b in range(B):
mask, feature = _patch_motion_single(
tracks[b], # (T, N, 4)
vid[b], # (C, T, H, W)
temperature,
vae_divide,
topk
)
out_masks.append(mask)
out_features.append(feature)
# Stack results: (B, C, T, H, W)
out_mask_full = torch.stack(out_masks, dim=0)
out_feature_full = torch.stack(out_features, dim=0)
return out_mask_full, out_feature_full
class WanTrackToVideo(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="WanTrackToVideo",
category="conditioning/video_models",
inputs=[
io.Conditioning.Input("positive"),
io.Conditioning.Input("negative"),
io.Vae.Input("vae"),
io.String.Input("tracks", multiline=True, default="[]"),
io.Int.Input("width", default=832, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("length", default=81, min=1, max=nodes.MAX_RESOLUTION, step=4),
io.Int.Input("batch_size", default=1, min=1, max=4096),
io.Float.Input("temperature", default=220.0, min=1.0, max=1000.0, step=0.1),
io.Int.Input("topk", default=2, min=1, max=10),
io.Image.Input("start_image"),
io.ClipVisionOutput.Input("clip_vision_output", optional=True),
],
outputs=[
io.Conditioning.Output(display_name="positive"),
io.Conditioning.Output(display_name="negative"),
io.Latent.Output(display_name="latent"),
],
)
@classmethod
def execute(cls, positive, negative, vae, tracks, width, height, length, batch_size,
temperature, topk, start_image=None, clip_vision_output=None) -> io.NodeOutput:
tracks_data = parse_json_tracks(tracks)
if not tracks_data:
return WanImageToVideo().execute(positive, negative, vae, width, height, length, batch_size, start_image=start_image, clip_vision_output=clip_vision_output)
latent = torch.zeros([batch_size, 16, ((length - 1) // 4) + 1, height // 8, width // 8],
device=comfy.model_management.intermediate_device())
if isinstance(tracks_data[0][0], dict):
tracks_data = [tracks_data]
processed_tracks = []
for batch in tracks_data:
arrs = []
for track in batch:
pts = pad_pts(track)
arrs.append(pts)
tracks_np = np.stack(arrs, axis=0)
processed_tracks.append(process_tracks(tracks_np, (width, height), length - 1).unsqueeze(0))
if start_image is not None:
start_image = comfy.utils.common_upscale(start_image[:batch_size].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
videos = torch.ones((start_image.shape[0], length, height, width, start_image.shape[-1]), device=start_image.device, dtype=start_image.dtype) * 0.5
for i in range(start_image.shape[0]):
videos[i, 0] = start_image[i]
latent_videos = []
videos = comfy.utils.resize_to_batch_size(videos, batch_size)
for i in range(batch_size):
latent_videos += [vae.encode(videos[i, :, :, :, :3])]
y = torch.cat(latent_videos, dim=0)
# Scale latent since patch_motion is non-linear
y = comfy.latent_formats.Wan21().process_in(y)
processed_tracks = comfy.utils.resize_list_to_batch_size(processed_tracks, batch_size)
res = patch_motion(
processed_tracks, y, temperature=temperature, topk=topk, vae_divide=(4, 16)
)
mask, concat_latent_image = res
concat_latent_image = comfy.latent_formats.Wan21().process_out(concat_latent_image)
mask = -mask + 1.0 # Invert mask to match expected format
positive = node_helpers.conditioning_set_values(positive,
{"concat_mask": mask,
"concat_latent_image": concat_latent_image})
negative = node_helpers.conditioning_set_values(negative,
{"concat_mask": mask,
"concat_latent_image": concat_latent_image})
if clip_vision_output is not None:
positive = node_helpers.conditioning_set_values(positive, {"clip_vision_output": clip_vision_output})
negative = node_helpers.conditioning_set_values(negative, {"clip_vision_output": clip_vision_output})
out_latent = {}
out_latent["samples"] = latent
return io.NodeOutput(positive, negative, out_latent)
def linear_interpolation(features, input_fps, output_fps, output_len=None):
"""
features: shape=[1, T, 512]
input_fps: fps for audio, f_a
output_fps: fps for video, f_m
output_len: video length
"""
features = features.transpose(1, 2) # [1, 512, T]
seq_len = features.shape[2] / float(input_fps) # T/f_a
if output_len is None:
output_len = int(seq_len * output_fps) # f_m*T/f_a
output_features = torch.nn.functional.interpolate(
features, size=output_len, align_corners=True,
mode='linear') # [1, 512, output_len]
return output_features.transpose(1, 2) # [1, output_len, 512]
def get_sample_indices(original_fps,
total_frames,
target_fps,
num_sample,
fixed_start=None):
required_duration = num_sample / target_fps
required_origin_frames = int(np.ceil(required_duration * original_fps))
if required_duration > total_frames / original_fps:
raise ValueError("required_duration must be less than video length")
if not fixed_start is None and fixed_start >= 0:
start_frame = fixed_start
else:
max_start = total_frames - required_origin_frames
if max_start < 0:
raise ValueError("video length is too short")
start_frame = np.random.randint(0, max_start + 1)
start_time = start_frame / original_fps
end_time = start_time + required_duration
time_points = np.linspace(start_time, end_time, num_sample, endpoint=False)
frame_indices = np.round(np.array(time_points) * original_fps).astype(int)
frame_indices = np.clip(frame_indices, 0, total_frames - 1)
return frame_indices
def get_audio_embed_bucket_fps(audio_embed, fps=16, batch_frames=81, m=0, video_rate=30):
num_layers, audio_frame_num, audio_dim = audio_embed.shape
if num_layers > 1:
return_all_layers = True
else:
return_all_layers = False
scale = video_rate / fps
min_batch_num = int(audio_frame_num / (batch_frames * scale)) + 1
bucket_num = min_batch_num * batch_frames
padd_audio_num = math.ceil(min_batch_num * batch_frames / fps * video_rate) - audio_frame_num
batch_idx = get_sample_indices(
original_fps=video_rate,
total_frames=audio_frame_num + padd_audio_num,
target_fps=fps,
num_sample=bucket_num,
fixed_start=0)
batch_audio_eb = []
audio_sample_stride = int(video_rate / fps)
for bi in batch_idx:
if bi < audio_frame_num:
chosen_idx = list(
range(bi - m * audio_sample_stride, bi + (m + 1) * audio_sample_stride, audio_sample_stride))
chosen_idx = [0 if c < 0 else c for c in chosen_idx]
chosen_idx = [
audio_frame_num - 1 if c >= audio_frame_num else c
for c in chosen_idx
]
if return_all_layers:
frame_audio_embed = audio_embed[:, chosen_idx].flatten(
start_dim=-2, end_dim=-1)
else:
frame_audio_embed = audio_embed[0][chosen_idx].flatten()
else:
frame_audio_embed = torch.zeros([audio_dim * (2 * m + 1)], device=audio_embed.device) if not return_all_layers \
else torch.zeros([num_layers, audio_dim * (2 * m + 1)], device=audio_embed.device)
batch_audio_eb.append(frame_audio_embed)
batch_audio_eb = torch.cat([c.unsqueeze(0) for c in batch_audio_eb], dim=0)
return batch_audio_eb, min_batch_num
class WanSoundImageToVideo(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="WanSoundImageToVideo",
category="conditioning/video_models",
inputs=[
io.Conditioning.Input("positive"),
io.Conditioning.Input("negative"),
io.Vae.Input("vae"),
io.Int.Input("width", default=832, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("length", default=77, min=1, max=nodes.MAX_RESOLUTION, step=4),
io.Int.Input("batch_size", default=1, min=1, max=4096),
io.AudioEncoderOutput.Input("audio_encoder_output", optional=True),
io.Image.Input("ref_image", optional=True),
io.Image.Input("control_video", optional=True),
io.Image.Input("ref_motion", optional=True),
],
outputs=[
io.Conditioning.Output(display_name="positive"),
io.Conditioning.Output(display_name="negative"),
io.Latent.Output(display_name="latent"),
],
is_experimental=True,
)
@classmethod
def execute(cls, positive, negative, vae, width, height, length, batch_size, ref_image=None, audio_encoder_output=None, control_video=None, ref_motion=None) -> io.NodeOutput:
latent_t = ((length - 1) // 4) + 1
if audio_encoder_output is not None:
feat = torch.cat(audio_encoder_output["encoded_audio_all_layers"])
video_rate = 30
fps = 16
feat = linear_interpolation(feat, input_fps=50, output_fps=video_rate)
audio_embed_bucket, num_repeat = get_audio_embed_bucket_fps(feat, fps=fps, batch_frames=latent_t * 4, m=0, video_rate=video_rate)
audio_embed_bucket = audio_embed_bucket.unsqueeze(0)
if len(audio_embed_bucket.shape) == 3:
audio_embed_bucket = audio_embed_bucket.permute(0, 2, 1)
elif len(audio_embed_bucket.shape) == 4:
audio_embed_bucket = audio_embed_bucket.permute(0, 2, 3, 1)
positive = node_helpers.conditioning_set_values(positive, {"audio_embed": audio_embed_bucket})
negative = node_helpers.conditioning_set_values(negative, {"audio_embed": audio_embed_bucket * 0.0})
if ref_image is not None:
ref_image = comfy.utils.common_upscale(ref_image[:1].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
ref_latent = vae.encode(ref_image[:, :, :, :3])
positive = node_helpers.conditioning_set_values(positive, {"reference_latents": [ref_latent]}, append=True)
negative = node_helpers.conditioning_set_values(negative, {"reference_latents": [ref_latent]}, append=True)
if ref_motion is not None:
if ref_motion.shape[0] > 73:
ref_motion = ref_motion[-73:]
ref_motion = comfy.utils.common_upscale(ref_motion.movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
if ref_motion.shape[0] < 73:
r = torch.ones([73, height, width, 3]) * 0.5
r[-ref_motion.shape[0]:] = ref_motion
ref_motion = r
ref_motion = vae.encode(ref_motion[:, :, :, :3])
positive = node_helpers.conditioning_set_values(positive, {"reference_motion": ref_motion})
negative = node_helpers.conditioning_set_values(negative, {"reference_motion": ref_motion})
latent = torch.zeros([batch_size, 16, latent_t, height // 8, width // 8], device=comfy.model_management.intermediate_device())
control_video_out = comfy.latent_formats.Wan21().process_out(torch.zeros_like(latent))
if control_video is not None:
control_video = comfy.utils.common_upscale(control_video[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
control_video = vae.encode(control_video[:, :, :, :3])
control_video_out[:, :, :control_video.shape[2]] = control_video
# TODO: check if zero is better than none if none provided
positive = node_helpers.conditioning_set_values(positive, {"control_video": control_video_out})
negative = node_helpers.conditioning_set_values(negative, {"control_video": control_video_out})
out_latent = {}
out_latent["samples"] = latent
return io.NodeOutput(positive, negative, out_latent)
class Wan22ImageToVideoLatent(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="Wan22ImageToVideoLatent",
category="conditioning/inpaint",
inputs=[
io.Vae.Input("vae"),
io.Int.Input("width", default=1280, min=32, max=nodes.MAX_RESOLUTION, step=32),
io.Int.Input("height", default=704, min=32, max=nodes.MAX_RESOLUTION, step=32),
io.Int.Input("length", default=49, min=1, max=nodes.MAX_RESOLUTION, step=4),
io.Int.Input("batch_size", default=1, min=1, max=4096),
io.Image.Input("start_image", optional=True),
],
outputs=[
io.Latent.Output(),
],
)
@classmethod
def execute(cls, vae, width, height, length, batch_size, start_image=None) -> io.NodeOutput:
latent = torch.zeros([1, 48, ((length - 1) // 4) + 1, height // 16, width // 16], device=comfy.model_management.intermediate_device())
if start_image is None:
out_latent = {}
out_latent["samples"] = latent
return io.NodeOutput(out_latent)
mask = torch.ones([latent.shape[0], 1, ((length - 1) // 4) + 1, latent.shape[-2], latent.shape[-1]], device=comfy.model_management.intermediate_device())
if start_image is not None:
start_image = comfy.utils.common_upscale(start_image[:length].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1)
latent_temp = vae.encode(start_image)
latent[:, :, :latent_temp.shape[-3]] = latent_temp
mask[:, :, :latent_temp.shape[-3]] *= 0.0
out_latent = {}
latent_format = comfy.latent_formats.Wan22()
latent = latent_format.process_out(latent) * mask + latent * (1.0 - mask)
out_latent["samples"] = latent.repeat((batch_size, ) + (1,) * (latent.ndim - 1))
out_latent["noise_mask"] = mask.repeat((batch_size, ) + (1,) * (mask.ndim - 1))
return io.NodeOutput(out_latent)
import comfy.patcher_extension
import comfy.ldm.modules.attention
class AttentionOverrideTest(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="AttentionOverrideTest",
category="devtools",
inputs=[
io.Model.Input("model"),
],
outputs=[
io.Model.Output(),
],
)
@staticmethod
def attention_override(func, transformer_options, *args, **kwargs):
new_attention = comfy.ldm.modules.attention.attention_basic
return new_attention.__wrapped__(*args, **kwargs)
@staticmethod
def sampler_sampler_wrapper(executor, *args, **kwargs):
try:
# extra_args = args[2]
return executor(*args, **kwargs)
finally:
pass
@classmethod
def execute(cls, model: io.Model.Type) -> io.NodeOutput:
model = model.clone()
model.model_options["transformer_options"]["optimized_attention_override"] = cls.attention_override
model.add_wrapper_with_key(comfy.patcher_extension.WrappersMP.SAMPLER_SAMPLE, "attention_override_test", cls.sampler_sampler_wrapper)
return io.NodeOutput(model)
class WanExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
WanTrackToVideo,
WanImageToVideo,
WanFunControlToVideo,
Wan22FunControlToVideo,
WanFunInpaintToVideo,
WanFirstLastFrameToVideo,
WanVaceToVideo,
TrimVideoLatent,
WanCameraImageToVideo,
WanPhantomSubjectToVideo,
WanSoundImageToVideo,
Wan22ImageToVideoLatent,
AttentionOverrideTest,
]
async def comfy_entrypoint() -> WanExtension:
return WanExtension()