ComfyUI/comfy_extras/v3/nodes_camera_trajectory.py

218 lines
8.9 KiB
Python

from __future__ import annotations
import numpy as np
import torch
from einops import rearrange
import comfy.model_management
import nodes
from comfy_api.v3 import io
CAMERA_DICT = {
"base_T_norm": 1.5,
"base_angle": np.pi / 3,
"Static": {"angle": [0.0, 0.0, 0.0], "T": [0.0, 0.0, 0.0]},
"Pan Up": {"angle": [0.0, 0.0, 0.0], "T": [0.0, -1.0, 0.0]},
"Pan Down": {"angle": [0.0, 0.0, 0.0], "T": [0.0, 1.0, 0.0]},
"Pan Left": {"angle": [0.0, 0.0, 0.0], "T": [-1.0, 0.0, 0.0]},
"Pan Right": {"angle": [0.0, 0.0, 0.0], "T": [1.0, 0.0, 0.0]},
"Zoom In": {"angle": [0.0, 0.0, 0.0], "T": [0.0, 0.0, 2.0]},
"Zoom Out": {"angle": [0.0, 0.0, 0.0], "T": [0.0, 0.0, -2.0]},
"Anti Clockwise (ACW)": {"angle": [0.0, 0.0, -1.0], "T": [0.0, 0.0, 0.0]},
"ClockWise (CW)": {"angle": [0.0, 0.0, 1.0], "T": [0.0, 0.0, 0.0]},
}
def process_pose_params(cam_params, width=672, height=384, original_pose_width=1280, original_pose_height=720, device="cpu"):
def get_relative_pose(cam_params):
"""Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py"""
abs_w2cs = [cam_param.w2c_mat for cam_param in cam_params]
abs_c2ws = [cam_param.c2w_mat for cam_param in cam_params]
cam_to_origin = 0
target_cam_c2w = np.array([[1, 0, 0, 0], [0, 1, 0, -cam_to_origin], [0, 0, 1, 0], [0, 0, 0, 1]])
abs2rel = target_cam_c2w @ abs_w2cs[0]
ret_poses = [target_cam_c2w] + [abs2rel @ abs_c2w for abs_c2w in abs_c2ws[1:]]
return np.array(ret_poses, dtype=np.float32)
"""Modified from https://github.com/hehao13/CameraCtrl/blob/main/inference.py"""
cam_params = [Camera(cam_param) for cam_param in cam_params]
sample_wh_ratio = width / height
pose_wh_ratio = original_pose_width / original_pose_height # Assuming placeholder ratios, change as needed
if pose_wh_ratio > sample_wh_ratio:
resized_ori_w = height * pose_wh_ratio
for cam_param in cam_params:
cam_param.fx = resized_ori_w * cam_param.fx / width
else:
resized_ori_h = width / pose_wh_ratio
for cam_param in cam_params:
cam_param.fy = resized_ori_h * cam_param.fy / height
intrinsic = np.asarray(
[[cam_param.fx * width, cam_param.fy * height, cam_param.cx * width, cam_param.cy * height] for cam_param in cam_params],
dtype=np.float32,
)
K = torch.as_tensor(intrinsic)[None] # [1, 1, 4]
c2ws = get_relative_pose(cam_params) # Assuming this function is defined elsewhere
c2ws = torch.as_tensor(c2ws)[None] # [1, n_frame, 4, 4]
plucker_embedding = ray_condition(K, c2ws, height, width, device=device)[0].permute(0, 3, 1, 2).contiguous() # V, 6, H, W
plucker_embedding = plucker_embedding[None]
return rearrange(plucker_embedding, "b f c h w -> b f h w c")[0]
class Camera:
"""Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py"""
def __init__(self, entry):
fx, fy, cx, cy = entry[1:5]
self.fx = fx
self.fy = fy
self.cx = cx
self.cy = cy
c2w_mat = np.array(entry[7:]).reshape(4, 4)
self.c2w_mat = c2w_mat
self.w2c_mat = np.linalg.inv(c2w_mat)
def ray_condition(K, c2w, H, W, device):
"""Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py"""
# c2w: B, V, 4, 4
# K: B, V, 4
B = K.shape[0]
j, i = torch.meshgrid(
torch.linspace(0, H - 1, H, device=device, dtype=c2w.dtype),
torch.linspace(0, W - 1, W, device=device, dtype=c2w.dtype),
indexing="ij",
)
i = i.reshape([1, 1, H * W]).expand([B, 1, H * W]) + 0.5 # [B, HxW]
j = j.reshape([1, 1, H * W]).expand([B, 1, H * W]) + 0.5 # [B, HxW]
fx, fy, cx, cy = K.chunk(4, dim=-1) # B,V, 1
zs = torch.ones_like(i) # [B, HxW]
xs = (i - cx) / fx * zs
ys = (j - cy) / fy * zs
zs = zs.expand_as(ys)
directions = torch.stack((xs, ys, zs), dim=-1) # B, V, HW, 3
directions = directions / directions.norm(dim=-1, keepdim=True) # B, V, HW, 3
rays_d = directions @ c2w[..., :3, :3].transpose(-1, -2) # B, V, 3, HW
rays_o = c2w[..., :3, 3] # B, V, 3
rays_o = rays_o[:, :, None].expand_as(rays_d) # B, V, 3, HW
# c2w @ dirctions
rays_dxo = torch.cross(rays_o, rays_d)
plucker = torch.cat([rays_dxo, rays_d], dim=-1)
plucker = plucker.reshape(B, c2w.shape[1], H, W, 6) # B, V, H, W, 6
# plucker = plucker.permute(0, 1, 4, 2, 3)
return plucker
def get_camera_motion(angle, T, speed, n=81):
def compute_R_form_rad_angle(angles):
theta_x, theta_y, theta_z = angles
Rx = np.array([[1, 0, 0], [0, np.cos(theta_x), -np.sin(theta_x)], [0, np.sin(theta_x), np.cos(theta_x)]])
Ry = np.array([[np.cos(theta_y), 0, np.sin(theta_y)], [0, 1, 0], [-np.sin(theta_y), 0, np.cos(theta_y)]])
Rz = np.array([[np.cos(theta_z), -np.sin(theta_z), 0], [np.sin(theta_z), np.cos(theta_z), 0], [0, 0, 1]])
R = np.dot(Rz, np.dot(Ry, Rx))
return R
RT = []
for i in range(n):
_angle = (i / n) * speed * (CAMERA_DICT["base_angle"]) * angle
R = compute_R_form_rad_angle(_angle)
_T = (i / n) * speed * (CAMERA_DICT["base_T_norm"]) * (T.reshape(3, 1))
_RT = np.concatenate([R, _T], axis=1)
RT.append(_RT)
RT = np.stack(RT)
return RT
class WanCameraEmbedding(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="WanCameraEmbedding_V3",
category="camera",
inputs=[
io.Combo.Input(
"camera_pose",
options=[
"Static",
"Pan Up",
"Pan Down",
"Pan Left",
"Pan Right",
"Zoom In",
"Zoom Out",
"Anti Clockwise (ACW)",
"ClockWise (CW)",
],
default="Static",
),
io.Int.Input("width", default=832, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16),
io.Int.Input("length", default=81, min=1, max=nodes.MAX_RESOLUTION, step=4),
io.Float.Input("speed", default=1.0, min=0, max=10.0, step=0.1, optional=True),
io.Float.Input("fx", default=0.5, min=0, max=1, step=0.000000001, optional=True),
io.Float.Input("fy", default=0.5, min=0, max=1, step=0.000000001, optional=True),
io.Float.Input("cx", default=0.5, min=0, max=1, step=0.01, optional=True),
io.Float.Input("cy", default=0.5, min=0, max=1, step=0.01, optional=True),
],
outputs=[
io.WanCameraEmbedding.Output(display_name="camera_embedding"),
io.Int.Output(display_name="width"),
io.Int.Output(display_name="height"),
io.Int.Output(display_name="length"),
],
)
@classmethod
def execute(cls, camera_pose, width, height, length, speed=1.0, fx=0.5, fy=0.5, cx=0.5, cy=0.5) -> io.NodeOutput:
"""
Use Camera trajectory as extrinsic parameters to calculate Plücker embeddings (Sitzmannet al., 2021)
Adapted from https://github.com/aigc-apps/VideoX-Fun/blob/main/comfyui/comfyui_nodes.py
"""
motion_list = [camera_pose]
speed = speed
angle = np.array(CAMERA_DICT[motion_list[0]]["angle"])
T = np.array(CAMERA_DICT[motion_list[0]]["T"])
RT = get_camera_motion(angle, T, speed, length)
trajs = []
for cp in RT.tolist():
traj = [fx, fy, cx, cy, 0, 0]
traj.extend(cp[0])
traj.extend(cp[1])
traj.extend(cp[2])
traj.extend([0, 0, 0, 1])
trajs.append(traj)
cam_params = np.array([[float(x) for x in pose] for pose in trajs])
cam_params = np.concatenate([np.zeros_like(cam_params[:, :1]), cam_params], 1)
control_camera_video = process_pose_params(cam_params, width=width, height=height)
control_camera_video = control_camera_video.permute([3, 0, 1, 2]).unsqueeze(0).to(device=comfy.model_management.intermediate_device())
control_camera_video = torch.concat(
[torch.repeat_interleave(control_camera_video[:, :, 0:1], repeats=4, dim=2), control_camera_video[:, :, 1:]], dim=2
).transpose(1, 2)
# Reshape, transpose, and view into desired shape
b, f, c, h, w = control_camera_video.shape
control_camera_video = control_camera_video.contiguous().view(b, f // 4, 4, c, h, w).transpose(2, 3)
control_camera_video = control_camera_video.contiguous().view(b, f // 4, c * 4, h, w).transpose(1, 2)
return io.NodeOutput(control_camera_video, width, height, length)
NODES_LIST = [
WanCameraEmbedding,
]