ComfyUI/comfy_extras/v3/nodes_stable_cascade.py
2025-07-16 11:24:46 +03:00

144 lines
5.1 KiB
Python

"""
This file is part of ComfyUI.
Copyright (C) 2024 Stability AI
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
"""
import torch
import comfy.utils
import nodes
from comfy_api.v3 import io
class StableCascade_EmptyLatentImage_V3(io.ComfyNodeV3):
@classmethod
def define_schema(cls):
return io.SchemaV3(
node_id="StableCascade_EmptyLatentImage_V3",
category="latent/stable_cascade",
inputs=[
io.Int.Input("width", default=1024, min=256, max=nodes.MAX_RESOLUTION, step=8),
io.Int.Input("height", default=1024, min=256, max=nodes.MAX_RESOLUTION, step=8),
io.Int.Input("compression", default=42, min=4, max=128, step=1),
io.Int.Input("batch_size", default=1, min=1, max=4096),
],
outputs=[
io.Latent.Output("stage_c", display_name="stage_c"),
io.Latent.Output("stage_b", display_name="stage_b"),
],
)
@classmethod
def execute(cls, width, height, compression, batch_size=1):
c_latent = torch.zeros([batch_size, 16, height // compression, width // compression])
b_latent = torch.zeros([batch_size, 4, height // 4, width // 4])
return io.NodeOutput({"samples": c_latent}, {"samples": b_latent})
class StableCascade_StageC_VAEEncode_V3(io.ComfyNodeV3):
@classmethod
def define_schema(cls):
return io.SchemaV3(
node_id="StableCascade_StageC_VAEEncode_V3",
category="latent/stable_cascade",
inputs=[
io.Image.Input("image"),
io.Vae.Input("vae"),
io.Int.Input("compression", default=42, min=4, max=128, step=1),
],
outputs=[
io.Latent.Output("stage_c", display_name="stage_c"),
io.Latent.Output("stage_b", display_name="stage_b"),
],
)
@classmethod
def execute(cls, image, vae, compression):
width = image.shape[-2]
height = image.shape[-3]
out_width = (width // compression) * vae.downscale_ratio
out_height = (height // compression) * vae.downscale_ratio
s = comfy.utils.common_upscale(image.movedim(-1, 1), out_width, out_height, "bicubic", "center").movedim(1, -1)
c_latent = vae.encode(s[:, :, :, :3])
b_latent = torch.zeros([c_latent.shape[0], 4, (height // 8) * 2, (width // 8) * 2])
return io.NodeOutput({"samples": c_latent}, {"samples": b_latent})
class StableCascade_StageB_Conditioning_V3(io.ComfyNodeV3):
@classmethod
def define_schema(cls):
return io.SchemaV3(
node_id="StableCascade_StageB_Conditioning_V3",
category="conditioning/stable_cascade",
inputs=[
io.Conditioning.Input("conditioning"),
io.Latent.Input("stage_c"),
],
outputs=[
io.Conditioning.Output(),
],
)
@classmethod
def execute(cls, conditioning, stage_c):
c = []
for t in conditioning:
d = t[1].copy()
d["stable_cascade_prior"] = stage_c["samples"]
n = [t[0], d]
c.append(n)
return io.NodeOutput(c)
class StableCascade_SuperResolutionControlnet_V3(io.ComfyNodeV3):
@classmethod
def define_schema(cls):
return io.SchemaV3(
node_id="StableCascade_SuperResolutionControlnet_V3",
category="_for_testing/stable_cascade",
is_experimental=True,
inputs=[
io.Image.Input("image"),
io.Vae.Input("vae"),
],
outputs=[
io.Image.Output("controlnet_input", display_name="controlnet_input"),
io.Latent.Output("stage_c", display_name="stage_c"),
io.Latent.Output("stage_b", display_name="stage_b"),
],
)
@classmethod
def execute(cls, image, vae):
width = image.shape[-2]
height = image.shape[-3]
batch_size = image.shape[0]
controlnet_input = vae.encode(image[:, :, :, :3]).movedim(1, -1)
c_latent = torch.zeros([batch_size, 16, height // 16, width // 16])
b_latent = torch.zeros([batch_size, 4, height // 2, width // 2])
return io.NodeOutput(controlnet_input, {"samples": c_latent}, {"samples": b_latent})
NODES_LIST: list[type[io.ComfyNodeV3]] = [
StableCascade_EmptyLatentImage_V3,
StableCascade_StageB_Conditioning_V3,
StableCascade_StageC_VAEEncode_V3,
StableCascade_SuperResolutionControlnet_V3,
]