mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-07-27 16:26:39 +00:00
348 lines
12 KiB
Python
348 lines
12 KiB
Python
from __future__ import annotations
|
|
|
|
import hashlib
|
|
import json
|
|
import os
|
|
from io import BytesIO
|
|
|
|
import av
|
|
import torch
|
|
import torchaudio
|
|
|
|
import comfy.model_management
|
|
import folder_paths
|
|
import node_helpers
|
|
from comfy.cli_args import args
|
|
from comfy_api.v3 import io, ui
|
|
|
|
|
|
class ConditioningStableAudio_V3(io.ComfyNodeV3):
|
|
@classmethod
|
|
def define_schema(cls):
|
|
return io.SchemaV3(
|
|
node_id="ConditioningStableAudio_V3",
|
|
category="conditioning",
|
|
inputs=[
|
|
io.Conditioning.Input(id="positive"),
|
|
io.Conditioning.Input(id="negative"),
|
|
io.Float.Input(id="seconds_start", default=0.0, min=0.0, max=1000.0, step=0.1),
|
|
io.Float.Input(id="seconds_total", default=47.0, min=0.0, max=1000.0, step=0.1),
|
|
],
|
|
outputs=[
|
|
io.Conditioning.Output(id="positive_out", display_name="positive"),
|
|
io.Conditioning.Output(id="negative_out", display_name="negative"),
|
|
],
|
|
)
|
|
|
|
@classmethod
|
|
def execute(cls, positive, negative, seconds_start, seconds_total) -> io.NodeOutput:
|
|
return io.NodeOutput(
|
|
node_helpers.conditioning_set_values(
|
|
positive, {"seconds_start": seconds_start, "seconds_total": seconds_total}
|
|
),
|
|
node_helpers.conditioning_set_values(
|
|
negative, {"seconds_start": seconds_start, "seconds_total": seconds_total}
|
|
),
|
|
)
|
|
|
|
|
|
class EmptyLatentAudio_V3(io.ComfyNodeV3):
|
|
@classmethod
|
|
def define_schema(cls):
|
|
return io.SchemaV3(
|
|
node_id="EmptyLatentAudio_V3",
|
|
category="latent/audio",
|
|
inputs=[
|
|
io.Float.Input(id="seconds", default=47.6, min=1.0, max=1000.0, step=0.1),
|
|
io.Int.Input(
|
|
id="batch_size", default=1, min=1, max=4096, tooltip="The number of latent images in the batch."
|
|
),
|
|
],
|
|
outputs=[io.Latent.Output()],
|
|
)
|
|
|
|
@classmethod
|
|
def execute(cls, seconds, batch_size) -> io.NodeOutput:
|
|
length = round((seconds * 44100 / 2048) / 2) * 2
|
|
latent = torch.zeros([batch_size, 64, length], device=comfy.model_management.intermediate_device())
|
|
return io.NodeOutput({"samples": latent, "type": "audio"})
|
|
|
|
|
|
class LoadAudio_V3(io.ComfyNodeV3):
|
|
@classmethod
|
|
def define_schema(cls):
|
|
return io.SchemaV3(
|
|
node_id="LoadAudio_V3", # frontend expects "LoadAudio" to work
|
|
display_name="Load Audio _V3", # frontend ignores "display_name" for this node
|
|
category="audio",
|
|
inputs=[
|
|
io.Combo.Input("audio", upload=io.UploadType.audio, options=cls.get_files_options()),
|
|
],
|
|
outputs=[io.Audio.Output()],
|
|
)
|
|
|
|
@classmethod
|
|
def get_files_options(cls) -> list[str]:
|
|
input_dir = folder_paths.get_input_directory()
|
|
return sorted(folder_paths.filter_files_content_types(os.listdir(input_dir), ["audio", "video"]))
|
|
|
|
@classmethod
|
|
def execute(cls, audio) -> io.NodeOutput:
|
|
waveform, sample_rate = torchaudio.load(folder_paths.get_annotated_filepath(audio))
|
|
return io.NodeOutput({"waveform": waveform.unsqueeze(0), "sample_rate": sample_rate})
|
|
|
|
@classmethod
|
|
def fingerprint_inputs(s, audio):
|
|
image_path = folder_paths.get_annotated_filepath(audio)
|
|
m = hashlib.sha256()
|
|
with open(image_path, "rb") as f:
|
|
m.update(f.read())
|
|
return m.digest().hex()
|
|
|
|
@classmethod
|
|
def validate_inputs(s, audio):
|
|
if not folder_paths.exists_annotated_filepath(audio):
|
|
return "Invalid audio file: {}".format(audio)
|
|
return True
|
|
|
|
|
|
class PreviewAudio_V3(io.ComfyNodeV3):
|
|
@classmethod
|
|
def define_schema(cls):
|
|
return io.SchemaV3(
|
|
node_id="PreviewAudio_V3", # frontend expects "PreviewAudio" to work
|
|
display_name="Preview Audio _V3", # frontend ignores "display_name" for this node
|
|
category="audio",
|
|
inputs=[
|
|
io.Audio.Input("audio"),
|
|
],
|
|
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
|
|
is_output_node=True,
|
|
)
|
|
|
|
@classmethod
|
|
def execute(cls, audio) -> io.NodeOutput:
|
|
return io.NodeOutput(ui=ui.PreviewAudio(audio, cls=cls))
|
|
|
|
|
|
class SaveAudioMP3_V3(io.ComfyNodeV3):
|
|
@classmethod
|
|
def define_schema(cls):
|
|
return io.SchemaV3(
|
|
node_id="SaveAudioMP3_V3", # frontend expects "SaveAudioMP3" to work
|
|
display_name="Save Audio(MP3) _V3", # frontend ignores "display_name" for this node
|
|
category="audio",
|
|
inputs=[
|
|
io.Audio.Input("audio"),
|
|
io.String.Input("filename_prefix", default="audio/ComfyUI"),
|
|
io.Combo.Input("quality", options=["V0", "128k", "320k"], default="V0"),
|
|
],
|
|
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
|
|
is_output_node=True,
|
|
)
|
|
|
|
@classmethod
|
|
def execute(self, audio, filename_prefix="ComfyUI", format="mp3", quality="V0") -> io.NodeOutput:
|
|
return _save_audio(self, audio, filename_prefix, format, quality)
|
|
|
|
|
|
class SaveAudioOpus_V3(io.ComfyNodeV3):
|
|
@classmethod
|
|
def define_schema(cls):
|
|
return io.SchemaV3(
|
|
node_id="SaveAudioOpus_V3", # frontend expects "SaveAudioOpus" to work
|
|
display_name="Save Audio(Opus) _V3", # frontend ignores "display_name" for this node
|
|
category="audio",
|
|
inputs=[
|
|
io.Audio.Input("audio"),
|
|
io.String.Input("filename_prefix", default="audio/ComfyUI"),
|
|
io.Combo.Input("quality", options=["64k", "96k", "128k", "192k", "320k"], default="128k"),
|
|
],
|
|
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
|
|
is_output_node=True,
|
|
)
|
|
|
|
@classmethod
|
|
def execute(self, audio, filename_prefix="ComfyUI", format="opus", quality="128k") -> io.NodeOutput:
|
|
return _save_audio(self, audio, filename_prefix, format, quality)
|
|
|
|
|
|
class SaveAudio_V3(io.ComfyNodeV3):
|
|
@classmethod
|
|
def define_schema(cls):
|
|
return io.SchemaV3(
|
|
node_id="SaveAudio_V3", # frontend expects "SaveAudio" to work
|
|
display_name="Save Audio _V3", # frontend ignores "display_name" for this node
|
|
category="audio",
|
|
inputs=[
|
|
io.Audio.Input("audio"),
|
|
io.String.Input("filename_prefix", default="audio/ComfyUI"),
|
|
],
|
|
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
|
|
is_output_node=True,
|
|
)
|
|
|
|
@classmethod
|
|
def execute(cls, audio, filename_prefix="ComfyUI", format="flac") -> io.NodeOutput:
|
|
return _save_audio(cls, audio, filename_prefix, format)
|
|
|
|
|
|
class VAEDecodeAudio_V3(io.ComfyNodeV3):
|
|
@classmethod
|
|
def define_schema(cls):
|
|
return io.SchemaV3(
|
|
node_id="VAEDecodeAudio_V3",
|
|
category="latent/audio",
|
|
inputs=[
|
|
io.Latent.Input(id="samples"),
|
|
io.Vae.Input(id="vae"),
|
|
],
|
|
outputs=[io.Audio.Output()],
|
|
)
|
|
|
|
@classmethod
|
|
def execute(cls, vae, samples) -> io.NodeOutput:
|
|
audio = vae.decode(samples["samples"]).movedim(-1, 1)
|
|
std = torch.std(audio, dim=[1, 2], keepdim=True) * 5.0
|
|
std[std < 1.0] = 1.0
|
|
audio /= std
|
|
return io.NodeOutput({"waveform": audio, "sample_rate": 44100})
|
|
|
|
|
|
class VAEEncodeAudio_V3(io.ComfyNodeV3):
|
|
@classmethod
|
|
def define_schema(cls):
|
|
return io.SchemaV3(
|
|
node_id="VAEEncodeAudio_V3",
|
|
category="latent/audio",
|
|
inputs=[
|
|
io.Audio.Input(id="audio"),
|
|
io.Vae.Input(id="vae"),
|
|
],
|
|
outputs=[io.Latent.Output()],
|
|
)
|
|
|
|
@classmethod
|
|
def execute(cls, vae, audio) -> io.NodeOutput:
|
|
sample_rate = audio["sample_rate"]
|
|
if 44100 != sample_rate:
|
|
waveform = torchaudio.functional.resample(audio["waveform"], sample_rate, 44100)
|
|
else:
|
|
waveform = audio["waveform"]
|
|
return io.NodeOutput({"samples": vae.encode(waveform.movedim(1, -1))})
|
|
|
|
|
|
def _save_audio(cls, audio, filename_prefix="ComfyUI", format="flac", quality="128k") -> io.NodeOutput:
|
|
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(
|
|
filename_prefix, folder_paths.get_output_directory()
|
|
)
|
|
|
|
# Prepare metadata dictionary
|
|
metadata = {}
|
|
if not args.disable_metadata:
|
|
if cls.hidden.prompt is not None:
|
|
metadata["prompt"] = json.dumps(cls.hidden.prompt)
|
|
if cls.hidden.extra_pnginfo is not None:
|
|
for x in cls.hidden.extra_pnginfo:
|
|
metadata[x] = json.dumps(cls.hidden.extra_pnginfo[x])
|
|
|
|
# Opus supported sample rates
|
|
OPUS_RATES = [8000, 12000, 16000, 24000, 48000]
|
|
|
|
results = []
|
|
for batch_number, waveform in enumerate(audio["waveform"].cpu()):
|
|
filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
|
|
file = f"{filename_with_batch_num}_{counter:05}_.{format}"
|
|
output_path = os.path.join(full_output_folder, file)
|
|
|
|
# Use original sample rate initially
|
|
sample_rate = audio["sample_rate"]
|
|
|
|
# Handle Opus sample rate requirements
|
|
if format == "opus":
|
|
if sample_rate > 48000:
|
|
sample_rate = 48000
|
|
elif sample_rate not in OPUS_RATES:
|
|
# Find the next highest supported rate
|
|
for rate in sorted(OPUS_RATES):
|
|
if rate > sample_rate:
|
|
sample_rate = rate
|
|
break
|
|
if sample_rate not in OPUS_RATES: # Fallback if still not supported
|
|
sample_rate = 48000
|
|
|
|
# Resample if necessary
|
|
if sample_rate != audio["sample_rate"]:
|
|
waveform = torchaudio.functional.resample(waveform, audio["sample_rate"], sample_rate)
|
|
|
|
# Create output with specified format
|
|
output_buffer = BytesIO()
|
|
output_container = av.open(output_buffer, mode="w", format=format)
|
|
|
|
# Set metadata on the container
|
|
for key, value in metadata.items():
|
|
output_container.metadata[key] = value
|
|
|
|
# Set up the output stream with appropriate properties
|
|
if format == "opus":
|
|
out_stream = output_container.add_stream("libopus", rate=sample_rate)
|
|
if quality == "64k":
|
|
out_stream.bit_rate = 64000
|
|
elif quality == "96k":
|
|
out_stream.bit_rate = 96000
|
|
elif quality == "128k":
|
|
out_stream.bit_rate = 128000
|
|
elif quality == "192k":
|
|
out_stream.bit_rate = 192000
|
|
elif quality == "320k":
|
|
out_stream.bit_rate = 320000
|
|
elif format == "mp3":
|
|
out_stream = output_container.add_stream("libmp3lame", rate=sample_rate)
|
|
if quality == "V0":
|
|
# TODO i would really love to support V3 and V5 but there doesn't seem to be a way to set the qscale level, the property below is a bool
|
|
out_stream.codec_context.qscale = 1
|
|
elif quality == "128k":
|
|
out_stream.bit_rate = 128000
|
|
elif quality == "320k":
|
|
out_stream.bit_rate = 320000
|
|
else: # format == "flac":
|
|
out_stream = output_container.add_stream("flac", rate=sample_rate)
|
|
|
|
frame = av.AudioFrame.from_ndarray(
|
|
waveform.movedim(0, 1).reshape(1, -1).float().numpy(),
|
|
format="flt",
|
|
layout="mono" if waveform.shape[0] == 1 else "stereo",
|
|
)
|
|
frame.sample_rate = sample_rate
|
|
frame.pts = 0
|
|
output_container.mux(out_stream.encode(frame))
|
|
|
|
# Flush encoder
|
|
output_container.mux(out_stream.encode(None))
|
|
|
|
# Close containers
|
|
output_container.close()
|
|
|
|
# Write the output to file
|
|
output_buffer.seek(0)
|
|
with open(output_path, "wb") as f:
|
|
f.write(output_buffer.getbuffer())
|
|
|
|
results.append(ui.SavedResult(file, subfolder, io.FolderType.output))
|
|
counter += 1
|
|
|
|
return io.NodeOutput(ui={"audio": results})
|
|
|
|
|
|
NODES_LIST: list[type[io.ComfyNodeV3]] = [
|
|
ConditioningStableAudio_V3,
|
|
EmptyLatentAudio_V3,
|
|
LoadAudio_V3,
|
|
PreviewAudio_V3,
|
|
SaveAudioMP3_V3,
|
|
SaveAudioOpus_V3,
|
|
SaveAudio_V3,
|
|
VAEDecodeAudio_V3,
|
|
VAEEncodeAudio_V3,
|
|
]
|