1129 lines
36 KiB
Python

from __future__ import annotations
from typing import Any, Literal, TYPE_CHECKING, TypeVar
from enum import Enum
from abc import ABC, abstractmethod
from dataclasses import dataclass, asdict
from comfy.comfy_types.node_typing import IO
from comfy_api.v3.io import ComfyNodeV3 as BASE_CV3
from comfy_api.v3.io import NodeOutput as BASE_NO
# if TYPE_CHECKING:
import torch
class InputBehavior(str, Enum):
'''Likely deprecated; required/optional can be a bool, unlikely to be more categories that fit.'''
required = "required"
optional = "optional"
class FolderType(str, Enum):
input = "input"
output = "output"
temp = "temp"
class RemoteOptions:
def __init__(self, route: str, refresh_button: bool, control_after_refresh: Literal["first", "last"]="first",
timeout: int=None, max_retries: int=None, refresh: int=None):
self.route = route
"""The route to the remote source."""
self.refresh_button = refresh_button
"""Specifies whether to show a refresh button in the UI below the widget."""
self.control_after_refresh = control_after_refresh
"""Specifies the control after the refresh button is clicked. If "first", the first item will be automatically selected, and so on."""
self.timeout = timeout
"""The maximum amount of time to wait for a response from the remote source in milliseconds."""
self.max_retries = max_retries
"""The maximum number of retries before aborting the request."""
self.refresh = refresh
"""The TTL of the remote input's value in milliseconds. Specifies the interval at which the remote input's value is refreshed."""
def as_dict(self):
return prune_dict({
"route": self.route,
"refresh_button": self.refresh_button,
"control_after_refresh": self.control_after_refresh,
"timeout": self.timeout,
"max_retries": self.max_retries,
"refresh": self.refresh,
})
def is_class(obj):
'''
Returns True if is a class type.
Returns False if is a class instance.
'''
return isinstance(obj, type)
class NumberDisplay(str, Enum):
number = "number"
slider = "slider"
class IO_V3:
'''
Base class for V3 Inputs and Outputs.
'''
Type = Any
def __init__(self):
pass
def __init_subclass__(cls, io_type: IO | str, **kwargs):
# TODO: do we need __ne__ trick for io_type? (see IO.__ne__ for details)
cls.io_type = io_type
super().__init_subclass__(**kwargs)
class InputV3(IO_V3, io_type=None):
'''
Base class for a V3 Input.
'''
def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None):
super().__init__()
self.id = id
self.display_name = display_name
self.optional = optional
self.tooltip = tooltip
self.lazy = lazy
def as_dict_V1(self):
return prune_dict({
"display_name": self.display_name,
"tooltip": self.tooltip,
"lazy": self.lazy
})
def get_io_type_V1(self):
return self.io_type
class WidgetInputV3(InputV3, io_type=None):
'''
Base class for a V3 Input with widget.
'''
def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None,
default: Any=None,
socketless: bool=None, widgetType: str=None):
super().__init__(id, display_name, optional, tooltip, lazy)
self.default = default
self.socketless = socketless
self.widgetType = widgetType
def as_dict_V1(self):
return super().as_dict_V1() | prune_dict({
"default": self.default,
"socketless": self.socketless,
"widgetType": self.widgetType,
})
class OutputV3(IO_V3, io_type=None):
def __init__(self, id: str, display_name: str=None, tooltip: str=None,
is_output_list=False):
self.id = id
self.display_name = display_name
self.tooltip = tooltip
self.is_output_list = is_output_list
def CustomType(io_type: IO | str) -> type[IO_V3]:
name = f"{io_type}_IO_V3"
return type(name, (IO_V3,), {}, io_type=io_type)
def CustomInput(id: str, io_type: IO | str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None) -> InputV3:
'''
Defines input for 'io_type'. Can be used to stand in for non-core types.
'''
input_kwargs = {
"id": id,
"display_name": display_name,
"optional": optional,
"tooltip": tooltip,
"lazy": lazy,
}
return type(f"{io_type}Input", (InputV3,), {}, io_type=io_type)(**input_kwargs)
def CustomOutput(id: str, io_type: IO | str, display_name: str=None, tooltip: str=None) -> OutputV3:
'''
Defines output for 'io_type'. Can be used to stand in for non-core types.
'''
input_kwargs = {
"id": id,
"display_name": display_name,
"tooltip": tooltip,
}
return type(f"{io_type}Output", (OutputV3,), {}, io_type=io_type)(**input_kwargs)
class Boolean:
Type = bool
class Input(WidgetInputV3, io_type=IO.BOOLEAN):
'''Boolean input.'''
def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None,
default: bool=None, label_on: str=None, label_off: str=None,
socketless: bool=None, widgetType: str=None):
super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, widgetType)
self.label_on = label_on
self.label_off = label_off
self.default: bool
def as_dict_V1(self):
return super().as_dict_V1() | prune_dict({
"label_on": self.label_on,
"label_off": self.label_off,
})
class Output(OutputV3, io_type=IO.BOOLEAN):
...
class Integer:
Type = int
class Input(WidgetInputV3, io_type=IO.INT):
'''Integer input.'''
def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None,
default: int=None, min: int=None, max: int=None, step: int=None, control_after_generate: bool=None,
display_mode: NumberDisplay=None, socketless: bool=None, widgetType: str=None):
super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, widgetType)
self.min = min
self.max = max
self.step = step
self.control_after_generate = control_after_generate
self.display_mode = display_mode
self.default: int
def as_dict_V1(self):
return super().as_dict_V1() | prune_dict({
"min": self.min,
"max": self.max,
"step": self.step,
"control_after_generate": self.control_after_generate,
"display": self.display_mode,
})
class Output(OutputV3, io_type=IO.INT):
...
class Float:
Type = float
class Input(WidgetInputV3, io_type=IO.FLOAT):
'''Float input.'''
def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None,
default: float=None, min: float=None, max: float=None, step: float=None, round: float=None,
display_mode: NumberDisplay=None, socketless: bool=None, widgetType: str=None):
super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, widgetType)
self.default = default
self.min = min
self.max = max
self.step = step
self.round = round
self.display_mode = display_mode
self.default: float
def as_dict_V1(self):
return super().as_dict_V1() | prune_dict({
"min": self.min,
"max": self.max,
"step": self.step,
"round": self.round,
"display": self.display_mode,
})
class Output(OutputV3, io_type=IO.FLOAT):
...
class String:
Type = str
class Input(WidgetInputV3, io_type=IO.STRING):
'''String input.'''
def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None,
multiline=False, placeholder: str=None, default: int=None,
socketless: bool=None, widgetType: str=None):
super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, widgetType)
self.multiline = multiline
self.placeholder = placeholder
self.default: str
def as_dict_V1(self):
return super().as_dict_V1() | prune_dict({
"multiline": self.multiline,
"placeholder": self.placeholder,
})
class Output(OutputV3, io_type=IO.STRING):
...
class ComboInput(WidgetInputV3, io_type=IO.COMBO):
'''Combo input (dropdown).'''
Type = str
def __init__(self, id: str, options: list[str]=None, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None,
default: str=None, control_after_generate: bool=None,
image_upload: bool=None, image_folder: FolderType=None,
remote: RemoteOptions=None,
socketless: bool=None, widgetType: str=None):
super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, widgetType)
self.multiselect = False
self.options = options
self.control_after_generate = control_after_generate
self.image_upload = image_upload
self.image_folder = image_folder
self.remote = remote
self.default: str
def as_dict_V1(self):
return super().as_dict_V1() | prune_dict({
"multiselect": self.multiselect,
"options": self.options,
"control_after_generate": self.control_after_generate,
"image_upload": self.image_upload,
"image_folder": self.image_folder.value if self.image_folder else None,
"remote": self.remote.as_dict() if self.remote else None,
})
class MultiselectComboWidget(ComboInput, io_type=IO.COMBO):
'''Multiselect Combo input (dropdown for selecting potentially more than one value).'''
def __init__(self, id: str, options: list[str], display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None,
default: list[str]=None, placeholder: str=None, chip: bool=None, control_after_generate: bool=None,
socketless: bool=None, widgetType: str=None):
super().__init__(id, options, display_name, optional, tooltip, lazy, default, control_after_generate, socketless, widgetType)
self.multiselect = True
self.placeholder = placeholder
self.chip = chip
self.default: list[str]
def as_dict_V1(self):
return super().as_dict_V1() | prune_dict({
"multiselect": self.multiselect,
"placeholder": self.placeholder,
"chip": self.chip,
})
class Image:
Type = torch.Tensor
class Input(InputV3, io_type=IO.IMAGE):
'''Image input.'''
class Output(OutputV3, io_type=IO.IMAGE):
...
class Mask:
Type = torch.Tensor
class Input(InputV3, io_type=IO.MASK):
'''Mask input.'''
class Output(OutputV3, io_type=IO.MASK):
...
class Latent:
Type = Any # TODO: make Type a TypedDict
class Input(InputV3, io_type=IO.LATENT):
'''Latent input.'''
class Output(OutputV3, io_type=IO.LATENT):
...
class Conditioning:
Type = Any
class Input(InputV3, io_type=IO.CONDITIONING):
'''Conditioning input.'''
class Output(OutputV3, io_type=IO.CONDITIONING):
...
class Sampler:
Type = Any
class Input(InputV3, io_type=IO.SAMPLER):
'''Sampler input.'''
class Output(OutputV3, io_type=IO.SAMPLER):
...
class Sigmas:
Type = Any
class Input(InputV3, io_type=IO.SIGMAS):
'''Sigmas input.'''
class Output(OutputV3, io_type=IO.SIGMAS):
...
class Noise:
Type = Any
class Input(InputV3, io_type=IO.NOISE):
'''Noise input.'''
class Output(OutputV3, io_type=IO.NOISE):
...
class Guider:
Type = Any
class Input(InputV3, io_type=IO.GUIDER):
'''Guider input.'''
class Output(OutputV3, io_type=IO.GUIDER):
...
class Clip:
Type = Any
class Input(InputV3, io_type=IO.CLIP):
'''Clip input.'''
class Output(OutputV3, io_type=IO.CLIP):
...
class ControlNet:
Type = Any
class Input(InputV3, io_type=IO.CONTROL_NET):
'''ControlNet input.'''
class Output(OutputV3, io_type=IO.CONTROL_NET):
...
class Vae:
Type = Any
class Input(InputV3, io_type=IO.VAE):
'''Vae input.'''
class Output(OutputV3, io_type=IO.VAE):
...
class Model:
Type = Any
class Input(InputV3, io_type=IO.MODEL):
'''Model input.'''
class Output(OutputV3, io_type=IO.MODEL):
...
class ClipVision:
Type = Any
class Input(InputV3, io_type=IO.CLIP_VISION):
'''ClipVision input.'''
class Output(OutputV3, io_type=IO.CLIP_VISION):
...
class ClipVisionOutput:
Type = Any
class Input(InputV3, io_type=IO.CLIP_VISION_OUTPUT):
'''CLipVisionOutput input.'''
class Output(OutputV3, io_type=IO.CLIP_VISION_OUTPUT):
...
class StyleModel:
Type = Any
class Input(InputV3, io_type=IO.STYLE_MODEL):
'''StyleModel input.'''
class Output(OutputV3, io_type=IO.STYLE_MODEL):
...
class Gligen:
Type = Any
class Input(InputV3, io_type=IO.GLIGEN):
'''Gligen input.'''
class Output(OutputV3, io_type=IO.GLIGEN):
...
class UpscaleModel:
Type = Any
class Input(InputV3, io_type=IO.UPSCALE_MODEL):
'''UpscaleModel input.'''
class Output(OutputV3, io_type=IO.UPSCALE_MODEL):
...
class Audio:
Type = Any
class Input(InputV3, io_type=IO.AUDIO):
'''Audio input.'''
class Output(OutputV3, io_type=IO.AUDIO):
...
class Point:
Type = Any
class Input(InputV3, io_type=IO.POINT):
'''Point input.'''
class Output(OutputV3, io_type=IO.POINT):
...
class FaceAnalysis:
Type = Any
class Input(InputV3, io_type=IO.FACE_ANALYSIS):
'''FaceAnalysis input.'''
class Output(OutputV3, io_type=IO.FACE_ANALYSIS):
...
class BBOX:
Type = Any
class Input(InputV3, io_type=IO.BBOX):
'''Bbox input.'''
class Output(OutputV3, io_type=IO.BBOX):
...
class SEGS:
Type = Any
class Input(InputV3, io_type=IO.SEGS):
'''SEGS input.'''
class Output(OutputV3, io_type=IO.SEGS):
...
class Video:
Type = Any
class Input(InputV3, io_type=IO.VIDEO):
'''Video input.'''
class Output(OutputV3, io_type=IO.VIDEO):
...
class MultitypedInput(InputV3, io_type="COMFY_MULTITYPED_V3"):
'''
Input that permits more than one input type.
'''
def __init__(self, id: str, io_types: list[type[IO_V3] | InputV3 | IO |str], display_name: str=None, optional=False, tooltip: str=None,):
super().__init__(id, display_name, optional, tooltip)
self._io_types = io_types
@property
def io_types(self) -> list[type[InputV3]]:
'''
Returns list of InputV3 class types permitted.
'''
io_types = []
for x in self._io_types:
if not is_class(x):
io_types.append(type(x))
else:
io_types.append(x)
return io_types
def get_io_type_V1(self):
return ",".join(x.io_type for x in self.io_types)
class DynamicInput(InputV3, io_type=None):
'''
Abstract class for dynamic input registration.
'''
def __init__(self, io_type: str, id: str, display_name: str=None):
super().__init__(io_type, id, display_name)
class DynamicOutput(OutputV3, io_type=None):
'''
Abstract class for dynamic output registration.
'''
def __init__(self, io_type: str, id: str, display_name: str=None):
super().__init__(io_type, id, display_name)
class AutoGrowDynamicInput(DynamicInput, io_type="COMFY_MULTIGROW_V3"):
'''
Dynamic Input that adds another template_input each time one is provided.
Additional inputs are forced to have 'InputBehavior.optional'.
'''
def __init__(self, id: str, template_input: InputV3, min: int=1, max: int=None):
super().__init__("AutoGrowDynamicInput", id)
self.template_input = template_input
if min is not None:
assert(min >= 1)
if max is not None:
assert(max >= 1)
self.min = min
self.max = max
class ComboDynamicInput(DynamicInput, io_type="COMFY_COMBODYNAMIC_V3"):
def __init__(self, id: str):
pass
AutoGrowDynamicInput(id="dynamic", template_input=Image.Input(id="image"))
class Hidden(str, Enum):
'''
Enumerator for requesting hidden variables in nodes.
'''
unique_id = "UNIQUE_ID"
"""UNIQUE_ID is the unique identifier of the node, and matches the id property of the node on the client side. It is commonly used in client-server communications (see messages)."""
prompt = "PROMPT"
"""PROMPT is the complete prompt sent by the client to the server. See the prompt object for a full description."""
extra_pnginfo = "EXTRA_PNGINFO"
"""EXTRA_PNGINFO is a dictionary that will be copied into the metadata of any .png files saved. Custom nodes can store additional information in this dictionary for saving (or as a way to communicate with a downstream node)."""
dynprompt = "DYNPROMPT"
"""DYNPROMPT is an instance of comfy_execution.graph.DynamicPrompt. It differs from PROMPT in that it may mutate during the course of execution in response to Node Expansion."""
auth_token_comfy_org = "AUTH_TOKEN_COMFY_ORG"
"""AUTH_TOKEN_COMFY_ORG is a token acquired from signing into a ComfyOrg account on frontend."""
api_key_comfy_org = "API_KEY_COMFY_ORG"
"""API_KEY_COMFY_ORG is an API Key generated by ComfyOrg that allows skipping signing into a ComfyOrg account on frontend."""
@dataclass
class NodeInfoV1:
input: dict=None
input_order: dict[str, list[str]]=None
output: list[str]=None
output_is_list: list[bool]=None
output_name: list[str]=None
output_tooltips: list[str]=None
name: str=None
display_name: str=None
description: str=None
python_module: Any=None
category: str=None
output_node: bool=None
deprecated: bool=None
experimental: bool=None
api_node: bool=None
def as_pruned_dict(dataclass_obj):
'''Return dict of dataclass object with pruned None values.'''
return prune_dict(asdict(dataclass_obj))
def prune_dict(d: dict):
return {k: v for k,v in d.items() if v is not None}
@dataclass
class SchemaV3:
"""Definition of V3 node properties."""
node_id: str
"""ID of node - should be globally unique. If this is a custom node, add a prefix or postfix to avoid name clashes."""
display_name: str = None
"""Display name of node."""
category: str = "sd"
"""The category of the node, as per the "Add Node" menu."""
inputs: list[InputV3]=None
outputs: list[OutputV3]=None
hidden: list[Hidden]=None
description: str=""
"""Node description, shown as a tooltip when hovering over the node."""
is_input_list: bool = False
"""A flag indicating if this node implements the additional code necessary to deal with OUTPUT_IS_LIST nodes.
All inputs of ``type`` will become ``list[type]``, regardless of how many items are passed in. This also affects ``check_lazy_status``.
From the docs:
A node can also override the default input behaviour and receive the whole list in a single call. This is done by setting a class attribute `INPUT_IS_LIST` to ``True``.
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/lists#list-processing
"""
is_output_node: bool=False
"""Flags this node as an output node, causing any inputs it requires to be executed.
If a node is not connected to any output nodes, that node will not be executed. Usage::
OUTPUT_NODE = True
From the docs:
By default, a node is not considered an output. Set ``OUTPUT_NODE = True`` to specify that it is.
Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#output-node
"""
is_deprecated: bool=False
"""Flags a node as deprecated, indicating to users that they should find alternatives to this node."""
is_experimental: bool=False
"""Flags a node as experimental, informing users that it may change or not work as expected."""
is_api_node: bool=False
"""Flags a node as an API node. See: https://docs.comfy.org/tutorials/api-nodes/overview."""
# class SchemaV3Class:
# def __init__(self,
# node_id: str,
# node_name: str,
# category: str,
# inputs: list[InputV3],
# outputs: list[OutputV3]=None,
# hidden: list[Hidden]=None,
# description: str="",
# is_input_list: bool = False,
# is_output_node: bool=False,
# is_deprecated: bool=False,
# is_experimental: bool=False,
# is_api_node: bool=False,
# ):
# self.node_id = node_id
# """ID of node - should be globally unique. If this is a custom node, add a prefix or postfix to avoid name clashes."""
# self.node_name = node_name
# """Display name of node."""
# self.category = category
# """The category of the node, as per the "Add Node" menu."""
# self.inputs = inputs
# self.outputs = outputs
# self.hidden = hidden
# self.description = description
# """Node description, shown as a tooltip when hovering over the node."""
# self.is_input_list = is_input_list
# """A flag indicating if this node implements the additional code necessary to deal with OUTPUT_IS_LIST nodes.
# All inputs of ``type`` will become ``list[type]``, regardless of how many items are passed in. This also affects ``check_lazy_status``.
# From the docs:
# A node can also override the default input behaviour and receive the whole list in a single call. This is done by setting a class attribute `INPUT_IS_LIST` to ``True``.
# Comfy Docs: https://docs.comfy.org/custom-nodes/backend/lists#list-processing
# """
# self.is_output_node = is_output_node
# """Flags this node as an output node, causing any inputs it requires to be executed.
# If a node is not connected to any output nodes, that node will not be executed. Usage::
# OUTPUT_NODE = True
# From the docs:
# By default, a node is not considered an output. Set ``OUTPUT_NODE = True`` to specify that it is.
# Comfy Docs: https://docs.comfy.org/custom-nodes/backend/server_overview#output-node
# """
# self.is_deprecated = is_deprecated
# """Flags a node as deprecated, indicating to users that they should find alternatives to this node."""
# self.is_experimental = is_experimental
# """Flags a node as experimental, informing users that it may change or not work as expected."""
# self.is_api_node = is_api_node
# """Flags a node as an API node. See: https://docs.comfy.org/tutorials/api-nodes/overview."""
class Serializer:
def __init_subclass__(cls, io_type: IO | str, **kwargs):
cls.io_type = io_type
super().__init_subclass__(**kwargs)
@classmethod
def serialize(cls, o: Any) -> str:
pass
@classmethod
def deserialize(cls, s: str) -> Any:
pass
def prepare_class_clone(c: ComfyNodeV3 | type[ComfyNodeV3]) -> type[ComfyNodeV3]:
"""Creates clone of real node class to prevent monkey-patching."""
c_type: type[ComfyNodeV3] = c if is_class(c) else type(c)
type_clone: type[ComfyNodeV3] = type(f"CLEAN_{c_type.__name__}", c_type.__bases__, {})
# TODO: what parameters should be carried over?
type_clone.SCHEMA = c_type.SCHEMA
# TODO: add anything we would want to expose inside node's execute function
return type_clone
class classproperty(object):
def __init__(self, f):
self.f = f
def __get__(self, obj, owner):
return self.f(owner)
class ComfyNodeV3(BASE_CV3):
"""Common base class for all V3 nodes."""
RELATIVE_PYTHON_MODULE = None
SCHEMA = None
@classmethod
def GET_NODE_INFO_V3(cls) -> dict[str, Any]:
schema = cls.GET_SCHEMA()
# TODO: finish
return None
@classmethod
@abstractmethod
def DEFINE_SCHEMA(cls) -> SchemaV3:
"""
Override this function with one that returns a SchemaV3 instance.
"""
return None
DEFINE_SCHEMA = None
@classmethod
@abstractmethod
def execute(cls, **kwargs) -> NodeOutput:
pass
execute = None
@classmethod
def GET_SERIALIZERS(cls) -> list[Serializer]:
return []
def __init__(self):
self.__class__.VALIDATE_CLASS()
@classmethod
def VALIDATE_CLASS(cls):
if not callable(cls.DEFINE_SCHEMA):
raise Exception(f"No DEFINE_SCHEMA function was defined for node class {cls.__name__}.")
if not callable(cls.execute):
raise Exception(f"No execute function was defined for node class {cls.__name__}.")
@classmethod
def prepare_class_clone(cls) -> type[ComfyNodeV3]:
"""Creates clone of real node class to prevent monkey-patching."""
c_type: type[ComfyNodeV3] = cls if is_class(cls) else type(cls)
type_clone: type[ComfyNodeV3] = type(f"CLEAN_{c_type.__name__}", c_type.__bases__, {})
# TODO: what parameters should be carried over?
type_clone.SCHEMA = c_type.SCHEMA
# TODO: add anything we would want to expose inside node's execute function
return type_clone
#############################################
# V1 Backwards Compatibility code
#--------------------------------------------
_DESCRIPTION = None
@classproperty
def DESCRIPTION(cls):
if cls._DESCRIPTION is None:
cls.GET_SCHEMA()
return cls._DESCRIPTION
_CATEGORY = None
@classproperty
def CATEGORY(cls):
if cls._CATEGORY is None:
cls.GET_SCHEMA()
return cls._CATEGORY
_EXPERIMENTAL = None
@classproperty
def EXPERIMENTAL(cls):
if cls._EXPERIMENTAL is None:
cls.GET_SCHEMA()
return cls._EXPERIMENTAL
_DEPRECATED = None
@classproperty
def DEPRECATED(cls):
if cls._DEPRECATED is None:
cls.GET_SCHEMA()
return cls._DEPRECATED
_API_NODE = None
@classproperty
def API_NODE(cls):
if cls._API_NODE is None:
cls.GET_SCHEMA()
return cls._API_NODE
_OUTPUT_NODE = None
@classproperty
def OUTPUT_NODE(cls):
if cls._OUTPUT_NODE is None:
cls.GET_SCHEMA()
return cls._OUTPUT_NODE
_INPUT_IS_LIST = None
@classproperty
def INPUT_IS_LIST(cls):
if cls._INPUT_IS_LIST is None:
cls.GET_SCHEMA()
return cls._INPUT_IS_LIST
_OUTPUT_IS_LIST = None
@classproperty
def OUTPUT_IS_LIST(cls):
if cls._OUTPUT_IS_LIST is None:
cls.GET_SCHEMA()
return cls._OUTPUT_IS_LIST
_RETURN_TYPES = None
@classproperty
def RETURN_TYPES(cls):
if cls._RETURN_TYPES is None:
cls.GET_SCHEMA()
return cls._RETURN_TYPES
_RETURN_NAMES = None
@classproperty
def RETURN_NAMES(cls):
if cls._RETURN_NAMES is None:
cls.GET_SCHEMA()
return cls._RETURN_NAMES
_OUTPUT_TOOLTIPS = None
@classproperty
def OUTPUT_TOOLTIPS(cls):
if cls._OUTPUT_TOOLTIPS is None:
cls.GET_SCHEMA()
return cls._OUTPUT_TOOLTIPS
FUNCTION = "execute"
@classmethod
def INPUT_TYPES(cls) -> dict[str, dict]:
schema = cls.DEFINE_SCHEMA()
# for V1, make inputs be a dict with potential keys {required, optional, hidden}
input = {
"required": {}
}
if schema.inputs:
for i in schema.inputs:
key = "optional" if i.optional else "required"
input.setdefault(key, {})[i.id] = (i.get_io_type_V1(), i.as_dict_V1())
if schema.hidden:
for hidden in schema.hidden:
input.setdefault("hidden", {})[hidden.name] = (hidden.value,)
return input
@classmethod
def GET_SCHEMA(cls) -> SchemaV3:
cls.VALIDATE_CLASS()
schema = cls.DEFINE_SCHEMA()
if cls._DESCRIPTION is None:
cls._DESCRIPTION = schema.description
if cls._CATEGORY is None:
cls._CATEGORY = schema.category
if cls._EXPERIMENTAL is None:
cls._EXPERIMENTAL = schema.is_experimental
if cls._DEPRECATED is None:
cls._DEPRECATED = schema.is_deprecated
if cls._API_NODE is None:
cls._API_NODE = schema.is_api_node
if cls._OUTPUT_NODE is None:
cls._OUTPUT_NODE = schema.is_output_node
if cls._INPUT_IS_LIST is None:
cls._INPUT_IS_LIST = schema.is_input_list
if cls._RETURN_TYPES is None:
output = []
output_name = []
output_is_list = []
output_tooltips = []
if schema.outputs:
for o in schema.outputs:
output.append(o.io_type)
output_name.append(o.display_name if o.display_name else o.io_type)
output_is_list.append(o.is_output_list)
output_tooltips.append(o.tooltip if o.tooltip else None)
cls._RETURN_TYPES = output
cls._RETURN_NAMES = output_name
cls._OUTPUT_IS_LIST = output_is_list
cls._OUTPUT_TOOLTIPS = output_tooltips
cls.SCHEMA = schema
return schema
@classmethod
def GET_NODE_INFO_V1(cls) -> dict[str, Any]:
schema = cls.GET_SCHEMA()
# get V1 inputs
input = cls.INPUT_TYPES()
# create separate lists from output fields
output = []
output_is_list = []
output_name = []
output_tooltips = []
if schema.outputs:
for o in schema.outputs:
output.append(o.io_type)
output_is_list.append(o.is_output_list)
output_name.append(o.display_name if o.display_name else o.io_type)
output_tooltips.append(o.tooltip if o.tooltip else None)
info = NodeInfoV1(
input=input,
input_order={key: list(value.keys()) for (key, value) in input.items()},
output=output,
output_is_list=output_is_list,
output_name=output_name,
output_tooltips=output_tooltips,
name=schema.node_id,
display_name=schema.display_name,
category=schema.category,
description=schema.description,
output_node=schema.is_output_node,
deprecated=schema.is_deprecated,
experimental=schema.is_experimental,
api_node=schema.is_api_node,
python_module=getattr(cls, "RELATIVE_PYTHON_MODULE", "nodes")
)
return asdict(info)
#--------------------------------------------
#############################################
# class ReturnedInputs:
# def __init__(self):
# pass
# class ReturnedOutputs:
# def __init__(self):
# pass
class NodeOutput(BASE_NO):
'''
Standardized output of a node; can pass in any number of args and/or a UIOutput into 'ui' kwarg.
'''
def __init__(self, *args: Any, ui: UIOutput | dict=None, expand: dict=None, block_execution: str=None, **kwargs):
self.args = args
self.ui = ui
self.expand = expand
self.block_execution = block_execution
@property
def result(self):
return self.args if len(self.args) > 0 else None
class SavedResult:
def __init__(self, filename: str, subfolder: str, type: FolderType):
self.filename = filename
self.subfolder = subfolder
self.type = type
def as_dict(self):
return {
"filename": self.filename,
"subfolder": self.subfolder,
"type": self.type.value
}
class UIOutput(ABC):
def __init__(self):
pass
@abstractmethod
def as_dict(self) -> dict:
... # TODO: finish
class UIImages(UIOutput):
def __init__(self, values: list[SavedResult | dict], animated=False, **kwargs):
self.values = values
self.animated = animated
def as_dict(self):
values = [x.as_dict() if isinstance(x, SavedResult) else x for x in self.values]
return {
"images": values,
"animated": (self.animated,)
}
class UILatents(UIOutput):
def __init__(self, values: list[SavedResult | dict], **kwargs):
self.values = values
def as_dict(self):
values = [x.as_dict() if isinstance(x, SavedResult) else x for x in self.values]
return {
"latents": values,
}
class UIAudio(UIOutput):
def __init__(self, values: list[SavedResult | dict], **kwargs):
self.values = values
def as_dict(self):
values = [x.as_dict() if isinstance(x, SavedResult) else x for x in self.values]
return {
"audio": values,
}
class UI3D(UIOutput):
def __init__(self, values: list[SavedResult | dict], **kwargs):
self.values = values
def as_dict(self):
values = [x.as_dict() if isinstance(x, SavedResult) else x for x in self.values]
return {
"3d": values,
}
class UIText(UIOutput):
def __init__(self, value: str, **kwargs):
self.value = value
def as_dict(self):
return {"text": (self.value,)}
class TestNode(ComfyNodeV3):
@classmethod
def DEFINE_SCHEMA(cls):
return SchemaV3(
node_id="TestNode_v3",
display_name="Test Node (V3)",
category="v3_test",
inputs=[Integer.Input("my_int"),
#AutoGrowDynamicInput("growing", Image.Input),
Mask.Input("thing"),
],
outputs=[Image.Output("image_output")],
hidden=[Hidden.api_key_comfy_org, Hidden.auth_token_comfy_org, Hidden.unique_id]
)
@classmethod
def execute(cls, **kwargs):
pass
if __name__ == "__main__":
print("hello there")
inputs: list[InputV3] = [
Integer.Input("tessfes", widgetType=IO.STRING),
Integer.Input("my_int"),
CustomInput("xyz", "XYZ"),
CustomInput("model1", "MODEL_M"),
Image.Input("my_image"),
Float.Input("my_float"),
MultitypedInput("my_inputs", [String.Input, CustomType("MODEL_M"), CustomType("XYZ")]),
]
outputs: list[OutputV3] = [
Image.Output("image"),
CustomOutput("xyz", "XYZ")
]
for c in inputs:
if isinstance(c, MultitypedInput):
print(f"{c}, {type(c)}, {type(c).io_type}, {c.id}, {[x.io_type for x in c.io_types]}")
print(c.get_io_type_V1())
else:
print(f"{c}, {type(c)}, {type(c).io_type}, {c.id}")
for c in outputs:
print(f"{c}, {type(c)}, {type(c).io_type}, {c.id}")
zz = TestNode()
print(zz.GET_NODE_INFO_V1())
# aa = NodeInfoV1()
# print(asdict(aa))
# print(as_pruned_dict(aa))