ComfyUI/comfy_api_nodes/nodes_stability.py
Jedrzej Kosinski 1271c4ef9d
More API Nodes (#7956)
* Add Ideogram generate node.

* Add staging api.

* Add API_NODE and common error for missing auth token (#5)

* Add Minimax Video Generation + Async Task queue polling example (#6)

* [Minimax] Show video preview and embed workflow in ouput (#7)

* Remove uv.lock

* Remove polling operations.

* Revert "Remove polling operations."

* Update stubs.

* Added Ideogram and Minimax back in.

* Added initial BFL Flux 1.1 [pro] Ultra node (#11)

* Add --comfy-api-base launch arg (#13)

* Add instructions for staging development. (#14)

* remove validation to make it easier to run against LAN copies of the API

* Manually add BFL polling status response schema (#15)

* Add function for uploading files. (#18)

* Add Luma nodes (#16)

* Refactor util functions (#20)

* Add VIDEO type (#21)

* Add rest of Luma node functionality (#19)

* Fix image_luma_ref not working (#28)

* [Bug] Remove duplicated option T2V-01 in MinimaxTextToVideoNode (#31)

* Add utils to map from pydantic model fields to comfy node inputs (#30)

* add veo2, bump av req (#32)

* Add Recraft nodes (#29)

* Add Kling Nodes (#12)

* Add Camera Concepts (luma_concepts) to Luma Video nodes (#33)

* Add Runway nodes (#17)

* Convert Minimax node to use VIDEO output type (#34)

* Standard `CATEGORY` system for api nodes (#35)

* Set `Content-Type` header when uploading files (#36)

* add better error propagation to veo2 (#37)

* Add Realistic Image and Logo Raster styles for Recraft v3 (#38)

* Fix runway image upload and progress polling (#39)

* Fix image upload for Luma: only include `Content-Type` header field if it's set explicitly (#40)

* Moved Luma nodes to nodes_luma.py (#47)

* Moved Recraft nodes to nodes_recraft.py (#48)

* Add Pixverse nodes (#46)

* Move and fix BFL nodes to node_bfl.py (#49)

* Move and edit Minimax node to nodes_minimax.py (#50)

* Add Minimax Image to Video node + Cleanup (#51)

* Add Recraft Text to Vector node, add Save SVG node to handle its output (#53)

* Added pixverse_template support to Pixverse Text to Video node (#54)

* Added Recraft Controls + Recraft Color RGB nodes (#57)

* split remaining nodes out of nodes_api, make utility lib, refactor ideogram (#61)

* Add types and doctstrings to utils file (#64)

* Fix: `PollingOperation` progress bar update progress by absolute value (#65)

* Use common download function in kling nodes module (#67)

* Fix: Luma video nodes in `api nodes/image` category (#68)

* Set request type explicitly (#66)

* Add `control_after_generate` to all seed inputs (#69)

* Fix bug: deleting `Content-Type` when property does not exist (#73)

* Add preview to Save SVG node (#74)

* change default poll interval (#76), rework veo2

* Add Pixverse and updated Kling types (#75)

* Added Pixverse Image to VIdeo node (#77)

* Add Pixverse Transition Video node (#79)

* Proper ray-1-6 support as fix has been applied in backend (#80)

* Added Recraft Style - Infinite Style Library node (#82)

* add ideogram v3 (#83)

* [Kling] Split Camera Control config to its own node (#81)

* Add Pika i2v and t2v nodes (#52)

* Temporary Fix for Runway (#87)

* Added Stability Stable Image Ultra node (#86)

* Remove Runway nodes (#88)

* Fix: Prompt text can't be validated in Kling nodes when using primitive nodes (#90)

* Fix: typo in node name "Stabiliy" => "Stability" (#91)

* Add String (Multiline) node (#93)

* Update Pika Duration and Resolution options (#94)

* Change base branch to master. Not main. (#95)

* Fix UploadRequest file_name param (#98)

* Removed Infinite Style Library until later (#99)

* fix ideogram style types (#100)

* fix multi image return (#101)

* add metadata saving to SVG (#102)

* Bump templates version to include API node template workflows (#104)

* Fix: `download_url_to_video_output` return type (#103)

* fix 4o generation bug (#106)

* Serve SVG files directly (#107)

* Add a bunch of nodes, 3 ready to use, the rest waiting for endpoint support (#108)

* Revert "Serve SVG files directly" (#111)

* Expose 4 remaining Recraft nodes (#112)

* [Kling] Add `Duration` and `Video ID` outputs (#105)

* Fix: datamodel-codegen sets string#binary type to non-existent `bytes_aliased` variable  (#114)

* Fix: Dall-e 2 not setting request content-type dynamically (#113)

* Default request timeout: one hour. (#116)

* Add Kling nodes: camera control, start-end frame, lip-sync, video extend (#115)

* Add 8 nodes - 4 BFL, 4 Stability (#117)

* Fix error for Recraft ImageToImage error for nonexistent random_seed param (#118)

* Add remaining Pika nodes (#119)

* Make controls input work for Recraft Image to Image node (#120)

* Use upstream PR: Support saving Comfy VIDEO type to buffer (#123)

* Use Upstream PR: "Fix: Error creating video when sliced audio tensor chunks are non-c-contiguous" (#127)

* Improve audio upload utils (#128)

* Fix: Nested `AnyUrl` in request model cannot be serialized (Kling, Runway) (#129)

* Show errors and API output URLs to the user (change log levels) (#131)

* Fix: Luma I2I fails when weight is <=0.01 (#132)

* Change category of `LumaConcepts` node from image to video (#133)

* Fix: `image.shape` accessed before `image` is null-checked (#134)

* Apply small fixes and most prompt validation (if needed to avoid API error) (#135)

* Node name/category modifications (#140)

* Add back Recraft Style - Infinite Style Library node (#141)

* Fixed Kling: Check attributes of pydantic types. (#144)

* Bump `comfyui-workflow-templates` version (#142)

* [Kling] Print response data when error validating response (#146)

* Fix: error validating Kling image response, trying to use `"key" in` on Pydantic class instance (#147)

* [Kling] Fix: Correct/verify supported subset of input combos in Kling nodes (#149)

* [Kling] Fix typo in node description (#150)

* [Kling] Fix: CFG min/max not being enforced (#151)

* Rebase launch-rebase (private) on prep-branch (public copy of master) (#153)

* Bump templates version (#154)

* Fix: Kling image gen nodes don't return entire batch when `n` > 1 (#152)

* Remove pixverse_template from PixVerse Transition Video node (#155)

* Invert image_weight value on Luma Image to Image node (#156)

* Invert and resize mask for Ideogram V3 node to match masking conventions (#158)

* [Kling] Fix: image generation nodes not returning Tuple (#159)

* [Bug] [Kling] Fix Kling camera control (#161)

* Kling Image Gen v2 + improve node descriptions for Flux/OpenAI (#160)

* [Kling] Don't return video_id from dual effect video (#162)

* Bump frontend to 1.18.8 (#163)

* Use 3.9 compat syntax (#164)

* Use Python 3.10

* add example env var

* Update templates to 0.1.11

* Bump frontend to 1.18.9

---------

Co-authored-by: Robin Huang <robin.j.huang@gmail.com>
Co-authored-by: Christian Byrne <cbyrne@comfy.org>
Co-authored-by: thot experiment <94414189+thot-experiment@users.noreply.github.com>
2025-05-06 04:23:00 -04:00

610 lines
22 KiB
Python

from inspect import cleandoc
from comfy.comfy_types.node_typing import IO
from comfy_api_nodes.apis.stability_api import (
StabilityUpscaleConservativeRequest,
StabilityUpscaleCreativeRequest,
StabilityAsyncResponse,
StabilityResultsGetResponse,
StabilityStable3_5Request,
StabilityStableUltraRequest,
StabilityStableUltraResponse,
StabilityAspectRatio,
Stability_SD3_5_Model,
Stability_SD3_5_GenerationMode,
get_stability_style_presets,
)
from comfy_api_nodes.apis.client import (
ApiEndpoint,
HttpMethod,
SynchronousOperation,
PollingOperation,
EmptyRequest,
)
from comfy_api_nodes.apinode_utils import (
bytesio_to_image_tensor,
tensor_to_bytesio,
validate_string,
)
import torch
import base64
from io import BytesIO
from enum import Enum
class StabilityPollStatus(str, Enum):
finished = "finished"
in_progress = "in_progress"
failed = "failed"
def get_async_dummy_status(x: StabilityResultsGetResponse):
if x.name is not None or x.errors is not None:
return StabilityPollStatus.failed
elif x.finish_reason is not None:
return StabilityPollStatus.finished
return StabilityPollStatus.in_progress
class StabilityStableImageUltraNode:
"""
Generates images synchronously based on prompt and resolution.
"""
RETURN_TYPES = (IO.IMAGE,)
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
FUNCTION = "api_call"
API_NODE = True
CATEGORY = "api node/image/Stability AI"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "What you wish to see in the output image. A strong, descriptive prompt that clearly defines" +
"What you wish to see in the output image. A strong, descriptive prompt that clearly defines" +
"elements, colors, and subjects will lead to better results. " +
"To control the weight of a given word use the format `(word:weight)`," +
"where `word` is the word you'd like to control the weight of and `weight`" +
"is a value between 0 and 1. For example: `The sky was a crisp (blue:0.3) and (green:0.8)`" +
"would convey a sky that was blue and green, but more green than blue."
},
),
"aspect_ratio": ([x.value for x in StabilityAspectRatio],
{
"default": StabilityAspectRatio.ratio_1_1,
"tooltip": "Aspect ratio of generated image.",
},
),
"style_preset": (get_stability_style_presets(),
{
"tooltip": "Optional desired style of generated image.",
},
),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 4294967294,
"control_after_generate": True,
"tooltip": "The random seed used for creating the noise.",
},
),
},
"optional": {
"image": (IO.IMAGE,),
"negative_prompt": (
IO.STRING,
{
"default": "",
"forceInput": True,
"tooltip": "A blurb of text describing what you do not wish to see in the output image. This is an advanced feature."
},
),
"image_denoise": (
IO.FLOAT,
{
"default": 0.5,
"min": 0.0,
"max": 1.0,
"step": 0.01,
"tooltip": "Denoise of input image; 0.0 yields image identical to input, 1.0 is as if no image was provided at all.",
},
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
},
}
def api_call(self, prompt: str, aspect_ratio: str, style_preset: str, seed: int,
negative_prompt: str=None, image: torch.Tensor = None, image_denoise: float=None,
auth_token=None):
validate_string(prompt, strip_whitespace=False)
# prepare image binary if image present
image_binary = None
if image is not None:
image_binary = tensor_to_bytesio(image, total_pixels=1504*1504).read()
else:
image_denoise = None
if not negative_prompt:
negative_prompt = None
if style_preset == "None":
style_preset = None
files = {
"image": image_binary
}
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/stability/v2beta/stable-image/generate/ultra",
method=HttpMethod.POST,
request_model=StabilityStableUltraRequest,
response_model=StabilityStableUltraResponse,
),
request=StabilityStableUltraRequest(
prompt=prompt,
negative_prompt=negative_prompt,
aspect_ratio=aspect_ratio,
seed=seed,
strength=image_denoise,
style_preset=style_preset,
),
files=files,
content_type="multipart/form-data",
auth_token=auth_token,
)
response_api = operation.execute()
if response_api.finish_reason != "SUCCESS":
raise Exception(f"Stable Image Ultra generation failed: {response_api.finish_reason}.")
image_data = base64.b64decode(response_api.image)
returned_image = bytesio_to_image_tensor(BytesIO(image_data))
return (returned_image,)
class StabilityStableImageSD_3_5Node:
"""
Generates images synchronously based on prompt and resolution.
"""
RETURN_TYPES = (IO.IMAGE,)
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
FUNCTION = "api_call"
API_NODE = True
CATEGORY = "api node/image/Stability AI"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "What you wish to see in the output image. A strong, descriptive prompt that clearly defines elements, colors, and subjects will lead to better results."
},
),
"model": ([x.value for x in Stability_SD3_5_Model],),
"aspect_ratio": ([x.value for x in StabilityAspectRatio],
{
"default": StabilityAspectRatio.ratio_1_1,
"tooltip": "Aspect ratio of generated image.",
},
),
"style_preset": (get_stability_style_presets(),
{
"tooltip": "Optional desired style of generated image.",
},
),
"cfg_scale": (
IO.FLOAT,
{
"default": 4.0,
"min": 1.0,
"max": 10.0,
"step": 0.1,
"tooltip": "How strictly the diffusion process adheres to the prompt text (higher values keep your image closer to your prompt)",
},
),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 4294967294,
"control_after_generate": True,
"tooltip": "The random seed used for creating the noise.",
},
),
},
"optional": {
"image": (IO.IMAGE,),
"negative_prompt": (
IO.STRING,
{
"default": "",
"forceInput": True,
"tooltip": "Keywords of what you do not wish to see in the output image. This is an advanced feature."
},
),
"image_denoise": (
IO.FLOAT,
{
"default": 0.5,
"min": 0.0,
"max": 1.0,
"step": 0.01,
"tooltip": "Denoise of input image; 0.0 yields image identical to input, 1.0 is as if no image was provided at all.",
},
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
},
}
def api_call(self, model: str, prompt: str, aspect_ratio: str, style_preset: str, seed: int, cfg_scale: float,
negative_prompt: str=None, image: torch.Tensor = None, image_denoise: float=None,
auth_token=None):
validate_string(prompt, strip_whitespace=False)
# prepare image binary if image present
image_binary = None
mode = Stability_SD3_5_GenerationMode.text_to_image
if image is not None:
image_binary = tensor_to_bytesio(image, total_pixels=1504*1504).read()
mode = Stability_SD3_5_GenerationMode.image_to_image
aspect_ratio = None
else:
image_denoise = None
if not negative_prompt:
negative_prompt = None
if style_preset == "None":
style_preset = None
files = {
"image": image_binary
}
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/stability/v2beta/stable-image/generate/sd3",
method=HttpMethod.POST,
request_model=StabilityStable3_5Request,
response_model=StabilityStableUltraResponse,
),
request=StabilityStable3_5Request(
prompt=prompt,
negative_prompt=negative_prompt,
aspect_ratio=aspect_ratio,
seed=seed,
strength=image_denoise,
style_preset=style_preset,
cfg_scale=cfg_scale,
model=model,
mode=mode,
),
files=files,
content_type="multipart/form-data",
auth_token=auth_token,
)
response_api = operation.execute()
if response_api.finish_reason != "SUCCESS":
raise Exception(f"Stable Diffusion 3.5 Image generation failed: {response_api.finish_reason}.")
image_data = base64.b64decode(response_api.image)
returned_image = bytesio_to_image_tensor(BytesIO(image_data))
return (returned_image,)
class StabilityUpscaleConservativeNode:
"""
Upscale image with minimal alterations to 4K resolution.
"""
RETURN_TYPES = (IO.IMAGE,)
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
FUNCTION = "api_call"
API_NODE = True
CATEGORY = "api node/image/Stability AI"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": (IO.IMAGE,),
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "What you wish to see in the output image. A strong, descriptive prompt that clearly defines elements, colors, and subjects will lead to better results."
},
),
"creativity": (
IO.FLOAT,
{
"default": 0.35,
"min": 0.2,
"max": 0.5,
"step": 0.01,
"tooltip": "Controls the likelihood of creating additional details not heavily conditioned by the init image.",
},
),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 4294967294,
"control_after_generate": True,
"tooltip": "The random seed used for creating the noise.",
},
),
},
"optional": {
"negative_prompt": (
IO.STRING,
{
"default": "",
"forceInput": True,
"tooltip": "Keywords of what you do not wish to see in the output image. This is an advanced feature."
},
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
},
}
def api_call(self, image: torch.Tensor, prompt: str, creativity: float, seed: int, negative_prompt: str=None,
auth_token=None):
validate_string(prompt, strip_whitespace=False)
image_binary = tensor_to_bytesio(image, total_pixels=1024*1024).read()
if not negative_prompt:
negative_prompt = None
files = {
"image": image_binary
}
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/stability/v2beta/stable-image/upscale/conservative",
method=HttpMethod.POST,
request_model=StabilityUpscaleConservativeRequest,
response_model=StabilityStableUltraResponse,
),
request=StabilityUpscaleConservativeRequest(
prompt=prompt,
negative_prompt=negative_prompt,
creativity=round(creativity,2),
seed=seed,
),
files=files,
content_type="multipart/form-data",
auth_token=auth_token,
)
response_api = operation.execute()
if response_api.finish_reason != "SUCCESS":
raise Exception(f"Stability Upscale Conservative generation failed: {response_api.finish_reason}.")
image_data = base64.b64decode(response_api.image)
returned_image = bytesio_to_image_tensor(BytesIO(image_data))
return (returned_image,)
class StabilityUpscaleCreativeNode:
"""
Upscale image with minimal alterations to 4K resolution.
"""
RETURN_TYPES = (IO.IMAGE,)
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
FUNCTION = "api_call"
API_NODE = True
CATEGORY = "api node/image/Stability AI"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": (IO.IMAGE,),
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "What you wish to see in the output image. A strong, descriptive prompt that clearly defines elements, colors, and subjects will lead to better results."
},
),
"creativity": (
IO.FLOAT,
{
"default": 0.3,
"min": 0.1,
"max": 0.5,
"step": 0.01,
"tooltip": "Controls the likelihood of creating additional details not heavily conditioned by the init image.",
},
),
"style_preset": (get_stability_style_presets(),
{
"tooltip": "Optional desired style of generated image.",
},
),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 4294967294,
"control_after_generate": True,
"tooltip": "The random seed used for creating the noise.",
},
),
},
"optional": {
"negative_prompt": (
IO.STRING,
{
"default": "",
"forceInput": True,
"tooltip": "Keywords of what you do not wish to see in the output image. This is an advanced feature."
},
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
},
}
def api_call(self, image: torch.Tensor, prompt: str, creativity: float, style_preset: str, seed: int, negative_prompt: str=None,
auth_token=None):
validate_string(prompt, strip_whitespace=False)
image_binary = tensor_to_bytesio(image, total_pixels=1024*1024).read()
if not negative_prompt:
negative_prompt = None
if style_preset == "None":
style_preset = None
files = {
"image": image_binary
}
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/stability/v2beta/stable-image/upscale/creative",
method=HttpMethod.POST,
request_model=StabilityUpscaleCreativeRequest,
response_model=StabilityAsyncResponse,
),
request=StabilityUpscaleCreativeRequest(
prompt=prompt,
negative_prompt=negative_prompt,
creativity=round(creativity,2),
style_preset=style_preset,
seed=seed,
),
files=files,
content_type="multipart/form-data",
auth_token=auth_token,
)
response_api = operation.execute()
operation = PollingOperation(
poll_endpoint=ApiEndpoint(
path=f"/proxy/stability/v2beta/results/{response_api.id}",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=StabilityResultsGetResponse,
),
poll_interval=3,
completed_statuses=[StabilityPollStatus.finished],
failed_statuses=[StabilityPollStatus.failed],
status_extractor=lambda x: get_async_dummy_status(x),
auth_token=auth_token,
)
response_poll: StabilityResultsGetResponse = operation.execute()
if response_poll.finish_reason != "SUCCESS":
raise Exception(f"Stability Upscale Creative generation failed: {response_poll.finish_reason}.")
image_data = base64.b64decode(response_poll.result)
returned_image = bytesio_to_image_tensor(BytesIO(image_data))
return (returned_image,)
class StabilityUpscaleFastNode:
"""
Quickly upscales an image via Stability API call to 4x its original size; intended for upscaling low-quality/compressed images.
"""
RETURN_TYPES = (IO.IMAGE,)
DESCRIPTION = cleandoc(__doc__ or "") # Handle potential None value
FUNCTION = "api_call"
API_NODE = True
CATEGORY = "api node/image/Stability AI"
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"image": (IO.IMAGE,),
},
"optional": {
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
},
}
def api_call(self, image: torch.Tensor,
auth_token=None):
image_binary = tensor_to_bytesio(image, total_pixels=4096*4096).read()
files = {
"image": image_binary
}
operation = SynchronousOperation(
endpoint=ApiEndpoint(
path="/proxy/stability/v2beta/stable-image/upscale/fast",
method=HttpMethod.POST,
request_model=EmptyRequest,
response_model=StabilityStableUltraResponse,
),
request=EmptyRequest(),
files=files,
content_type="multipart/form-data",
auth_token=auth_token,
)
response_api = operation.execute()
if response_api.finish_reason != "SUCCESS":
raise Exception(f"Stability Upscale Fast failed: {response_api.finish_reason}.")
image_data = base64.b64decode(response_api.image)
returned_image = bytesio_to_image_tensor(BytesIO(image_data))
return (returned_image,)
# A dictionary that contains all nodes you want to export with their names
# NOTE: names should be globally unique
NODE_CLASS_MAPPINGS = {
"StabilityStableImageUltraNode": StabilityStableImageUltraNode,
"StabilityStableImageSD_3_5Node": StabilityStableImageSD_3_5Node,
"StabilityUpscaleConservativeNode": StabilityUpscaleConservativeNode,
"StabilityUpscaleCreativeNode": StabilityUpscaleCreativeNode,
"StabilityUpscaleFastNode": StabilityUpscaleFastNode,
}
# A dictionary that contains the friendly/humanly readable titles for the nodes
NODE_DISPLAY_NAME_MAPPINGS = {
"StabilityStableImageUltraNode": "Stability AI Stable Image Ultra",
"StabilityStableImageSD_3_5Node": "Stability AI Stable Diffusion 3.5 Image",
"StabilityUpscaleConservativeNode": "Stability AI Upscale Conservative",
"StabilityUpscaleCreativeNode": "Stability AI Upscale Creative",
"StabilityUpscaleFastNode": "Stability AI Upscale Fast",
}