ComfyUI/comfy_api_nodes/nodes_moonvalley.py
Thor-ATX c60467a148
Update negative prompt for Moonvalley nodes (#9038)
Co-authored-by: thorsten <thorsten@tripod-digital.co.nz>
2025-07-25 17:27:03 -04:00

729 lines
25 KiB
Python

import logging
from typing import Any, Callable, Optional, TypeVar
import random
import torch
from comfy_api_nodes.util.validation_utils import (
get_image_dimensions,
validate_image_dimensions,
validate_video_dimensions,
)
from comfy_api_nodes.apis import (
MoonvalleyTextToVideoRequest,
MoonvalleyTextToVideoInferenceParams,
MoonvalleyVideoToVideoInferenceParams,
MoonvalleyVideoToVideoRequest,
MoonvalleyPromptResponse,
)
from comfy_api_nodes.apis.client import (
ApiEndpoint,
HttpMethod,
SynchronousOperation,
PollingOperation,
EmptyRequest,
)
from comfy_api_nodes.apinode_utils import (
download_url_to_video_output,
upload_images_to_comfyapi,
upload_video_to_comfyapi,
)
from comfy_api_nodes.mapper_utils import model_field_to_node_input
from comfy_api.input.video_types import VideoInput
from comfy.comfy_types.node_typing import IO
from comfy_api.input_impl import VideoFromFile
import av
import io
API_UPLOADS_ENDPOINT = "/proxy/moonvalley/uploads"
API_PROMPTS_ENDPOINT = "/proxy/moonvalley/prompts"
API_VIDEO2VIDEO_ENDPOINT = "/proxy/moonvalley/prompts/video-to-video"
API_TXT2VIDEO_ENDPOINT = "/proxy/moonvalley/prompts/text-to-video"
API_IMG2VIDEO_ENDPOINT = "/proxy/moonvalley/prompts/image-to-video"
MIN_WIDTH = 300
MIN_HEIGHT = 300
MAX_WIDTH = 10000
MAX_HEIGHT = 10000
MIN_VID_WIDTH = 300
MIN_VID_HEIGHT = 300
MAX_VID_WIDTH = 10000
MAX_VID_HEIGHT = 10000
MAX_VIDEO_SIZE = 1024 * 1024 * 1024 # 1 GB max for in-memory video processing
MOONVALLEY_MAREY_MAX_PROMPT_LENGTH = 5000
R = TypeVar("R")
class MoonvalleyApiError(Exception):
"""Base exception for Moonvalley API errors."""
pass
def is_valid_task_creation_response(response: MoonvalleyPromptResponse) -> bool:
"""Verifies that the initial response contains a task ID."""
return bool(response.id)
def validate_task_creation_response(response) -> None:
if not is_valid_task_creation_response(response):
error_msg = f"Moonvalley Marey API: Initial request failed. Code: {response.code}, Message: {response.message}, Data: {response}"
logging.error(error_msg)
raise MoonvalleyApiError(error_msg)
def get_video_from_response(response):
video = response.output_url
logging.info(
"Moonvalley Marey API: Task %s succeeded. Video URL: %s", response.id, video
)
return video
def get_video_url_from_response(response) -> Optional[str]:
"""Returns the first video url from the Moonvalley video generation task result.
Will not raise an error if the response is not valid.
"""
if response:
return str(get_video_from_response(response))
else:
return None
def poll_until_finished(
auth_kwargs: dict[str, str],
api_endpoint: ApiEndpoint[Any, R],
result_url_extractor: Optional[Callable[[R], str]] = None,
node_id: Optional[str] = None,
) -> R:
"""Polls the Moonvalley API endpoint until the task reaches a terminal state, then returns the response."""
return PollingOperation(
poll_endpoint=api_endpoint,
completed_statuses=[
"completed",
],
max_poll_attempts=240, # 64 minutes with 16s interval
poll_interval=16.0,
failed_statuses=["error"],
status_extractor=lambda response: (
response.status if response and response.status else None
),
auth_kwargs=auth_kwargs,
result_url_extractor=result_url_extractor,
node_id=node_id,
).execute()
def validate_prompts(
prompt: str, negative_prompt: str, max_length=MOONVALLEY_MAREY_MAX_PROMPT_LENGTH
):
"""Verifies that the prompt isn't empty and that neither prompt is too long."""
if not prompt:
raise ValueError("Positive prompt is empty")
if len(prompt) > max_length:
raise ValueError(f"Positive prompt is too long: {len(prompt)} characters")
if negative_prompt and len(negative_prompt) > max_length:
raise ValueError(
f"Negative prompt is too long: {len(negative_prompt)} characters"
)
return True
def validate_input_media(width, height, with_frame_conditioning, num_frames_in=None):
# inference validation
# T = num_frames
# in all cases, the following must be true: T divisible by 16 and H,W by 8. in addition...
# with image conditioning: H*W must be divisible by 8192
# without image conditioning: T divisible by 32
if num_frames_in and not num_frames_in % 16 == 0:
return False, ("The input video total frame count must be divisible by 16!")
if height % 8 != 0 or width % 8 != 0:
return False, (
f"Height ({height}) and width ({width}) must be " "divisible by 8"
)
if with_frame_conditioning:
if (height * width) % 8192 != 0:
return False, (
f"Height * width ({height * width}) must be "
"divisible by 8192 for frame conditioning"
)
else:
if num_frames_in and not num_frames_in % 32 == 0:
return False, ("The input video total frame count must be divisible by 32!")
def validate_input_image(
image: torch.Tensor, with_frame_conditioning: bool = False
) -> None:
"""
Validates the input image adheres to the expectations of the API:
- The image resolution should not be less than 300*300px
- The aspect ratio of the image should be between 1:2.5 ~ 2.5:1
"""
height, width = get_image_dimensions(image)
validate_input_media(width, height, with_frame_conditioning)
validate_image_dimensions(
image, min_width=300, min_height=300, max_height=MAX_HEIGHT, max_width=MAX_WIDTH
)
def validate_input_video(
video: VideoInput, num_frames_out: int, with_frame_conditioning: bool = False
):
try:
width, height = video.get_dimensions()
except Exception as e:
logging.error("Error getting dimensions of video: %s", e)
raise ValueError(f"Cannot get video dimensions: {e}") from e
validate_input_media(width, height, with_frame_conditioning)
validate_video_dimensions(
video,
min_width=MIN_VID_WIDTH,
min_height=MIN_VID_HEIGHT,
max_width=MAX_VID_WIDTH,
max_height=MAX_VID_HEIGHT,
)
trimmed_video = validate_input_video_length(video, num_frames_out)
return trimmed_video
def validate_input_video_length(video: VideoInput, num_frames: int):
if video.get_duration() > 60:
raise MoonvalleyApiError(
"Input Video lenth should be less than 1min. Please trim."
)
if num_frames == 128:
if video.get_duration() < 5:
raise MoonvalleyApiError(
"Input Video length is less than 5s. Please use a video longer than or equal to 5s."
)
if video.get_duration() > 5:
# trim video to 5s
video = trim_video(video, 5)
if num_frames == 256:
if video.get_duration() < 10:
raise MoonvalleyApiError(
"Input Video length is less than 10s. Please use a video longer than or equal to 10s."
)
if video.get_duration() > 10:
# trim video to 10s
video = trim_video(video, 10)
return video
def trim_video(video: VideoInput, duration_sec: float) -> VideoInput:
"""
Returns a new VideoInput object trimmed from the beginning to the specified duration,
using av to avoid loading entire video into memory.
Args:
video: Input video to trim
duration_sec: Duration in seconds to keep from the beginning
Returns:
VideoFromFile object that owns the output buffer
"""
output_buffer = io.BytesIO()
input_container = None
output_container = None
try:
# Get the stream source - this avoids loading entire video into memory
# when the source is already a file path
input_source = video.get_stream_source()
# Open containers
input_container = av.open(input_source, mode="r")
output_container = av.open(output_buffer, mode="w", format="mp4")
# Set up output streams for re-encoding
video_stream = None
audio_stream = None
for stream in input_container.streams:
logging.info(f"Found stream: type={stream.type}, class={type(stream)}")
if isinstance(stream, av.VideoStream):
# Create output video stream with same parameters
video_stream = output_container.add_stream(
"h264", rate=stream.average_rate
)
video_stream.width = stream.width
video_stream.height = stream.height
video_stream.pix_fmt = "yuv420p"
logging.info(
f"Added video stream: {stream.width}x{stream.height} @ {stream.average_rate}fps"
)
elif isinstance(stream, av.AudioStream):
# Create output audio stream with same parameters
audio_stream = output_container.add_stream(
"aac", rate=stream.sample_rate
)
audio_stream.sample_rate = stream.sample_rate
audio_stream.layout = stream.layout
logging.info(
f"Added audio stream: {stream.sample_rate}Hz, {stream.channels} channels"
)
# Calculate target frame count that's divisible by 32
fps = input_container.streams.video[0].average_rate
estimated_frames = int(duration_sec * fps)
target_frames = (
estimated_frames // 32
) * 32 # Round down to nearest multiple of 32
if target_frames == 0:
raise ValueError("Video too short: need at least 32 frames for Moonvalley")
frame_count = 0
audio_frame_count = 0
# Decode and re-encode video frames
if video_stream:
for frame in input_container.decode(video=0):
if frame_count >= target_frames:
break
# Re-encode frame
for packet in video_stream.encode(frame):
output_container.mux(packet)
frame_count += 1
# Flush encoder
for packet in video_stream.encode():
output_container.mux(packet)
logging.info(
f"Encoded {frame_count} video frames (target: {target_frames})"
)
# Decode and re-encode audio frames
if audio_stream:
input_container.seek(0) # Reset to beginning for audio
for frame in input_container.decode(audio=0):
if frame.time >= duration_sec:
break
# Re-encode frame
for packet in audio_stream.encode(frame):
output_container.mux(packet)
audio_frame_count += 1
# Flush encoder
for packet in audio_stream.encode():
output_container.mux(packet)
logging.info(f"Encoded {audio_frame_count} audio frames")
# Close containers
output_container.close()
input_container.close()
# Return as VideoFromFile using the buffer
output_buffer.seek(0)
return VideoFromFile(output_buffer)
except Exception as e:
# Clean up on error
if input_container is not None:
input_container.close()
if output_container is not None:
output_container.close()
raise RuntimeError(f"Failed to trim video: {str(e)}") from e
# --- BaseMoonvalleyVideoNode ---
class BaseMoonvalleyVideoNode:
def parseWidthHeightFromRes(self, resolution: str):
# Accepts a string like "16:9 (1920 x 1080)" and returns width, height as a dict
res_map = {
"16:9 (1920 x 1080)": {"width": 1920, "height": 1080},
"9:16 (1080 x 1920)": {"width": 1080, "height": 1920},
"1:1 (1152 x 1152)": {"width": 1152, "height": 1152},
"4:3 (1440 x 1080)": {"width": 1440, "height": 1080},
"3:4 (1080 x 1440)": {"width": 1080, "height": 1440},
"21:9 (2560 x 1080)": {"width": 2560, "height": 1080},
}
if resolution in res_map:
return res_map[resolution]
else:
# Default to 1920x1080 if unknown
return {"width": 1920, "height": 1080}
def parseControlParameter(self, value):
control_map = {
"Motion Transfer": "motion_control",
"Canny": "canny_control",
"Pose Transfer": "pose_control",
"Depth": "depth_control",
}
if value in control_map:
return control_map[value]
else:
return control_map["Motion Transfer"]
def get_response(
self, task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None
) -> MoonvalleyPromptResponse:
return poll_until_finished(
auth_kwargs,
ApiEndpoint(
path=f"{API_PROMPTS_ENDPOINT}/{task_id}",
method=HttpMethod.GET,
request_model=EmptyRequest,
response_model=MoonvalleyPromptResponse,
),
result_url_extractor=get_video_url_from_response,
node_id=node_id,
)
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"prompt": model_field_to_node_input(
IO.STRING,
MoonvalleyTextToVideoRequest,
"prompt_text",
multiline=True,
),
"negative_prompt": model_field_to_node_input(
IO.STRING,
MoonvalleyTextToVideoInferenceParams,
"negative_prompt",
multiline=True,
default="low-poly, flat shader, bad rigging, stiff animation, uncanny eyes, low-quality textures, looping glitch, cheap effect, overbloom, bloom spam, default lighting, game asset, stiff face, ugly specular, AI artifacts",
),
"resolution": (
IO.COMBO,
{
"options": [
"16:9 (1920 x 1080)",
"9:16 (1080 x 1920)",
"1:1 (1152 x 1152)",
"4:3 (1440 x 1080)",
"3:4 (1080 x 1440)",
"21:9 (2560 x 1080)",
],
"default": "16:9 (1920 x 1080)",
"tooltip": "Resolution of the output video",
},
),
# "length": (IO.COMBO,{"options":['5s','10s'], "default": '5s'}),
"prompt_adherence": model_field_to_node_input(
IO.FLOAT,
MoonvalleyTextToVideoInferenceParams,
"guidance_scale",
default=7.0,
step=1,
min=1,
max=20,
),
"seed": model_field_to_node_input(
IO.INT,
MoonvalleyTextToVideoInferenceParams,
"seed",
default=random.randint(0, 2**32 - 1),
min=0,
max=4294967295,
step=1,
display="number",
tooltip="Random seed value",
control_after_generate=True,
),
"steps": model_field_to_node_input(
IO.INT,
MoonvalleyTextToVideoInferenceParams,
"steps",
default=100,
min=1,
max=100,
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
},
"optional": {
"image": model_field_to_node_input(
IO.IMAGE,
MoonvalleyTextToVideoRequest,
"image_url",
tooltip="The reference image used to generate the video",
),
},
}
RETURN_TYPES = ("STRING",)
FUNCTION = "generate"
CATEGORY = "api node/video/Moonvalley Marey"
API_NODE = True
def generate(self, **kwargs):
return None
# --- MoonvalleyImg2VideoNode ---
class MoonvalleyImg2VideoNode(BaseMoonvalleyVideoNode):
@classmethod
def INPUT_TYPES(cls):
return super().INPUT_TYPES()
RETURN_TYPES = ("VIDEO",)
RETURN_NAMES = ("video",)
DESCRIPTION = "Moonvalley Marey Image to Video Node"
def generate(
self, prompt, negative_prompt, unique_id: Optional[str] = None, **kwargs
):
image = kwargs.get("image", None)
if image is None:
raise MoonvalleyApiError("image is required")
total_frames = get_total_frames_from_length()
validate_input_image(image, True)
validate_prompts(prompt, negative_prompt, MOONVALLEY_MAREY_MAX_PROMPT_LENGTH)
width_height = self.parseWidthHeightFromRes(kwargs.get("resolution"))
inference_params = MoonvalleyTextToVideoInferenceParams(
negative_prompt=negative_prompt,
steps=kwargs.get("steps"),
seed=kwargs.get("seed"),
guidance_scale=kwargs.get("prompt_adherence"),
num_frames=total_frames,
width=width_height.get("width"),
height=width_height.get("height"),
use_negative_prompts=True,
)
"""Upload image to comfy backend to have a URL available for further processing"""
# Get MIME type from tensor - assuming PNG format for image tensors
mime_type = "image/png"
image_url = upload_images_to_comfyapi(
image, max_images=1, auth_kwargs=kwargs, mime_type=mime_type
)[0]
request = MoonvalleyTextToVideoRequest(
image_url=image_url, prompt_text=prompt, inference_params=inference_params
)
initial_operation = SynchronousOperation(
endpoint=ApiEndpoint(
path=API_IMG2VIDEO_ENDPOINT,
method=HttpMethod.POST,
request_model=MoonvalleyTextToVideoRequest,
response_model=MoonvalleyPromptResponse,
),
request=request,
auth_kwargs=kwargs,
)
task_creation_response = initial_operation.execute()
validate_task_creation_response(task_creation_response)
task_id = task_creation_response.id
final_response = self.get_response(
task_id, auth_kwargs=kwargs, node_id=unique_id
)
video = download_url_to_video_output(final_response.output_url)
return (video,)
# --- MoonvalleyVid2VidNode ---
class MoonvalleyVideo2VideoNode(BaseMoonvalleyVideoNode):
def __init__(self):
super().__init__()
@classmethod
def INPUT_TYPES(cls):
input_types = super().INPUT_TYPES()
for param in ["resolution", "image"]:
if param in input_types["required"]:
del input_types["required"][param]
if param in input_types["optional"]:
del input_types["optional"][param]
input_types["optional"] = {
"video": (
IO.VIDEO,
{
"default": "",
"multiline": False,
"tooltip": "The reference video used to generate the output video. Input a 5s video for 128 frames and a 10s video for 256 frames. Longer videos will be trimmed automatically.",
},
),
"control_type": (
["Motion Transfer", "Pose Transfer"],
{"default": "Motion Transfer"},
),
"motion_intensity": (
"INT",
{
"default": 100,
"step": 1,
"min": 0,
"max": 100,
"tooltip": "Only used if control_type is 'Motion Transfer'",
},
),
}
return input_types
RETURN_TYPES = ("VIDEO",)
RETURN_NAMES = ("video",)
def generate(
self, prompt, negative_prompt, unique_id: Optional[str] = None, **kwargs
):
video = kwargs.get("video")
num_frames = get_total_frames_from_length()
if not video:
raise MoonvalleyApiError("video is required")
"""Validate video input"""
video_url = ""
if video:
validated_video = validate_input_video(video, num_frames, False)
video_url = upload_video_to_comfyapi(validated_video, auth_kwargs=kwargs)
control_type = kwargs.get("control_type")
motion_intensity = kwargs.get("motion_intensity")
"""Validate prompts and inference input"""
validate_prompts(prompt, negative_prompt)
inference_params = MoonvalleyVideoToVideoInferenceParams(
negative_prompt=negative_prompt,
steps=kwargs.get("steps"),
seed=kwargs.get("seed"),
guidance_scale=kwargs.get("prompt_adherence"),
control_params={"motion_intensity": motion_intensity},
)
control = self.parseControlParameter(control_type)
request = MoonvalleyVideoToVideoRequest(
control_type=control,
video_url=video_url,
prompt_text=prompt,
inference_params=inference_params,
)
initial_operation = SynchronousOperation(
endpoint=ApiEndpoint(
path=API_VIDEO2VIDEO_ENDPOINT,
method=HttpMethod.POST,
request_model=MoonvalleyVideoToVideoRequest,
response_model=MoonvalleyPromptResponse,
),
request=request,
auth_kwargs=kwargs,
)
task_creation_response = initial_operation.execute()
validate_task_creation_response(task_creation_response)
task_id = task_creation_response.id
final_response = self.get_response(
task_id, auth_kwargs=kwargs, node_id=unique_id
)
video = download_url_to_video_output(final_response.output_url)
return (video,)
# --- MoonvalleyTxt2VideoNode ---
class MoonvalleyTxt2VideoNode(BaseMoonvalleyVideoNode):
def __init__(self):
super().__init__()
RETURN_TYPES = ("VIDEO",)
RETURN_NAMES = ("video",)
@classmethod
def INPUT_TYPES(cls):
input_types = super().INPUT_TYPES()
# Remove image-specific parameters
for param in ["image"]:
if param in input_types["optional"]:
del input_types["optional"][param]
return input_types
def generate(
self, prompt, negative_prompt, unique_id: Optional[str] = None, **kwargs
):
validate_prompts(prompt, negative_prompt, MOONVALLEY_MAREY_MAX_PROMPT_LENGTH)
width_height = self.parseWidthHeightFromRes(kwargs.get("resolution"))
num_frames = get_total_frames_from_length()
inference_params = MoonvalleyTextToVideoInferenceParams(
negative_prompt=negative_prompt,
steps=kwargs.get("steps"),
seed=kwargs.get("seed"),
guidance_scale=kwargs.get("prompt_adherence"),
num_frames=num_frames,
width=width_height.get("width"),
height=width_height.get("height"),
)
request = MoonvalleyTextToVideoRequest(
prompt_text=prompt, inference_params=inference_params
)
initial_operation = SynchronousOperation(
endpoint=ApiEndpoint(
path=API_TXT2VIDEO_ENDPOINT,
method=HttpMethod.POST,
request_model=MoonvalleyTextToVideoRequest,
response_model=MoonvalleyPromptResponse,
),
request=request,
auth_kwargs=kwargs,
)
task_creation_response = initial_operation.execute()
validate_task_creation_response(task_creation_response)
task_id = task_creation_response.id
final_response = self.get_response(
task_id, auth_kwargs=kwargs, node_id=unique_id
)
video = download_url_to_video_output(final_response.output_url)
return (video,)
NODE_CLASS_MAPPINGS = {
"MoonvalleyImg2VideoNode": MoonvalleyImg2VideoNode,
"MoonvalleyTxt2VideoNode": MoonvalleyTxt2VideoNode,
# "MoonvalleyVideo2VideoNode": MoonvalleyVideo2VideoNode,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"MoonvalleyImg2VideoNode": "Moonvalley Marey Image to Video",
"MoonvalleyTxt2VideoNode": "Moonvalley Marey Text to Video",
# "MoonvalleyVideo2VideoNode": "Moonvalley Marey Video to Video",
}
def get_total_frames_from_length(length="5s"):
# if length == '5s':
# return 128
# elif length == '10s':
# return 256
return 128
# else:
# raise MoonvalleyApiError("length is required")