ComfyUI/comfy_extras/v3/nodes_upscale_model.py

107 lines
3.5 KiB
Python

from __future__ import annotations
import logging
import torch
from spandrel import ImageModelDescriptor, ModelLoader
import comfy.utils
import folder_paths
from comfy import model_management
from comfy_api.v3 import io
try:
from spandrel import MAIN_REGISTRY
from spandrel_extra_arches import EXTRA_REGISTRY
MAIN_REGISTRY.add(*EXTRA_REGISTRY)
logging.info("Successfully imported spandrel_extra_arches: support for non commercial upscale models.")
except Exception:
pass
class ImageUpscaleWithModel(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="ImageUpscaleWithModel_V3",
display_name="Upscale Image (using Model) _V3",
category="image/upscaling",
inputs=[
io.UpscaleModel.Input("upscale_model"),
io.Image.Input("image"),
],
outputs=[
io.Image.Output(),
],
)
@classmethod
def execute(cls, upscale_model, image):
device = model_management.get_torch_device()
memory_required = model_management.module_size(upscale_model.model)
memory_required += (512 * 512 * 3) * image.element_size() * max(upscale_model.scale, 1.0) * 384.0 #The 384.0 is an estimate of how much some of these models take, TODO: make it more accurate
memory_required += image.nelement() * image.element_size()
model_management.free_memory(memory_required, device)
upscale_model.to(device)
in_img = image.movedim(-1,-3).to(device)
tile = 512
overlap = 32
oom = True
while oom:
try:
steps = in_img.shape[0] * comfy.utils.get_tiled_scale_steps(
in_img.shape[3], in_img.shape[2], tile_x=tile, tile_y=tile, overlap=overlap
)
pbar = comfy.utils.ProgressBar(steps)
s = comfy.utils.tiled_scale(
in_img, lambda a: upscale_model(a), tile_x=tile, tile_y=tile, overlap=overlap, upscale_amount=upscale_model.scale, pbar=pbar
)
oom = False
except model_management.OOM_EXCEPTION as e:
tile //= 2
if tile < 128:
raise e
upscale_model.to("cpu")
s = torch.clamp(s.movedim(-3,-1), min=0, max=1.0)
return io.NodeOutput(s)
class UpscaleModelLoader(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="UpscaleModelLoader_V3",
display_name="Load Upscale Model _V3",
category="loaders",
inputs=[
io.Combo.Input("model_name", options=folder_paths.get_filename_list("upscale_models")),
],
outputs=[
io.UpscaleModel.Output(),
],
)
@classmethod
def execute(cls, model_name):
model_path = folder_paths.get_full_path_or_raise("upscale_models", model_name)
sd = comfy.utils.load_torch_file(model_path, safe_load=True)
if "module.layers.0.residual_group.blocks.0.norm1.weight" in sd:
sd = comfy.utils.state_dict_prefix_replace(sd, {"module.":""})
out = ModelLoader().load_from_state_dict(sd).eval()
if not isinstance(out, ImageModelDescriptor):
raise Exception("Upscale model must be a single-image model.")
return io.NodeOutput(out)
NODES_LIST = [
ImageUpscaleWithModel,
UpscaleModelLoader,
]