ComfyUI/comfy_extras/v3/nodes_audio.py

348 lines
12 KiB
Python

from __future__ import annotations
import hashlib
import json
import os
from io import BytesIO
import av
import torch
import torchaudio
import comfy.model_management
import folder_paths
import node_helpers
from comfy.cli_args import args
from comfy_api.v3 import io, ui
class ConditioningStableAudio_V3(io.ComfyNodeV3):
@classmethod
def DEFINE_SCHEMA(cls):
return io.SchemaV3(
node_id="ConditioningStableAudio_V3",
category="conditioning",
inputs=[
io.Conditioning.Input(id="positive"),
io.Conditioning.Input(id="negative"),
io.Float.Input(id="seconds_start", default=0.0, min=0.0, max=1000.0, step=0.1),
io.Float.Input(id="seconds_total", default=47.0, min=0.0, max=1000.0, step=0.1),
],
outputs=[
io.Conditioning.Output(id="positive_out", display_name="positive"),
io.Conditioning.Output(id="negative_out", display_name="negative"),
],
)
@classmethod
def execute(cls, positive, negative, seconds_start, seconds_total) -> io.NodeOutput:
return io.NodeOutput(
node_helpers.conditioning_set_values(
positive, {"seconds_start": seconds_start, "seconds_total": seconds_total}
),
node_helpers.conditioning_set_values(
negative, {"seconds_start": seconds_start, "seconds_total": seconds_total}
),
)
class EmptyLatentAudio_V3(io.ComfyNodeV3):
@classmethod
def DEFINE_SCHEMA(cls):
return io.SchemaV3(
node_id="EmptyLatentAudio_V3",
category="latent/audio",
inputs=[
io.Float.Input(id="seconds", default=47.6, min=1.0, max=1000.0, step=0.1),
io.Int.Input(
id="batch_size", default=1, min=1, max=4096, tooltip="The number of latent images in the batch."
),
],
outputs=[io.Latent.Output()],
)
@classmethod
def execute(cls, seconds, batch_size) -> io.NodeOutput:
length = round((seconds * 44100 / 2048) / 2) * 2
latent = torch.zeros([batch_size, 64, length], device=comfy.model_management.intermediate_device())
return io.NodeOutput({"samples":latent, "type": "audio"})
class LoadAudio_V3(io.ComfyNodeV3):
@classmethod
def DEFINE_SCHEMA(cls):
return io.SchemaV3(
node_id="LoadAudio_V3", # frontend expects "LoadAudio" to work
display_name="Load Audio _V3", # frontend ignores "display_name" for this node
category="audio",
inputs=[
io.Combo.Input("audio", upload=io.UploadType.audio, options=cls.get_files_options()),
],
outputs=[io.Audio.Output()],
)
@classmethod
def get_files_options(cls) -> list[str]:
input_dir = folder_paths.get_input_directory()
return sorted(folder_paths.filter_files_content_types(os.listdir(input_dir), ["audio", "video"]))
@classmethod
def execute(cls, audio) -> io.NodeOutput:
waveform, sample_rate = torchaudio.load(folder_paths.get_annotated_filepath(audio))
return io.NodeOutput({"waveform": waveform.unsqueeze(0), "sample_rate": sample_rate})
@classmethod
def fingerprint_inputs(s, audio):
image_path = folder_paths.get_annotated_filepath(audio)
m = hashlib.sha256()
with open(image_path, "rb") as f:
m.update(f.read())
return m.digest().hex()
@classmethod
def validate_inputs(s, audio):
if not folder_paths.exists_annotated_filepath(audio):
return "Invalid audio file: {}".format(audio)
return True
class PreviewAudio_V3(io.ComfyNodeV3):
@classmethod
def DEFINE_SCHEMA(cls):
return io.SchemaV3(
node_id="PreviewAudio_V3", # frontend expects "PreviewAudio" to work
display_name="Preview Audio _V3", # frontend ignores "display_name" for this node
category="audio",
inputs=[
io.Audio.Input("audio"),
],
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
is_output_node=True,
)
@classmethod
def execute(cls, audio) -> io.NodeOutput:
return io.NodeOutput(ui=ui.PreviewAudio(audio, cls=cls))
class SaveAudioMP3_V3(io.ComfyNodeV3):
@classmethod
def DEFINE_SCHEMA(cls):
return io.SchemaV3(
node_id="SaveAudioMP3_V3", # frontend expects "SaveAudioMP3" to work
display_name="Save Audio(MP3) _V3", # frontend ignores "display_name" for this node
category="audio",
inputs=[
io.Audio.Input("audio"),
io.String.Input("filename_prefix", default="audio/ComfyUI"),
io.Combo.Input("quality", options=["V0", "128k", "320k"], default="V0"),
],
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
is_output_node=True,
)
@classmethod
def execute(self, audio, filename_prefix="ComfyUI", format="mp3", quality="V0") -> io.NodeOutput:
return _save_audio(self, audio, filename_prefix, format, quality)
class SaveAudioOpus_V3(io.ComfyNodeV3):
@classmethod
def DEFINE_SCHEMA(cls):
return io.SchemaV3(
node_id="SaveAudioOpus_V3", # frontend expects "SaveAudioOpus" to work
display_name="Save Audio(Opus) _V3", # frontend ignores "display_name" for this node
category="audio",
inputs=[
io.Audio.Input("audio"),
io.String.Input("filename_prefix", default="audio/ComfyUI"),
io.Combo.Input("quality", options=["64k", "96k", "128k", "192k", "320k"], default="128k"),
],
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
is_output_node=True,
)
@classmethod
def execute(self, audio, filename_prefix="ComfyUI", format="opus", quality="128k") -> io.NodeOutput:
return _save_audio(self, audio, filename_prefix, format, quality)
class SaveAudio_V3(io.ComfyNodeV3):
@classmethod
def DEFINE_SCHEMA(cls):
return io.SchemaV3(
node_id="SaveAudio_V3", # frontend expects "SaveAudio" to work
display_name="Save Audio _V3", # frontend ignores "display_name" for this node
category="audio",
inputs=[
io.Audio.Input("audio"),
io.String.Input("filename_prefix", default="audio/ComfyUI"),
],
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
is_output_node=True,
)
@classmethod
def execute(cls, audio, filename_prefix="ComfyUI", format="flac") -> io.NodeOutput:
return _save_audio(cls, audio, filename_prefix, format)
class VAEDecodeAudio_V3(io.ComfyNodeV3):
@classmethod
def DEFINE_SCHEMA(cls):
return io.SchemaV3(
node_id="VAEDecodeAudio_V3",
category="latent/audio",
inputs=[
io.Latent.Input(id="samples"),
io.Vae.Input(id="vae"),
],
outputs=[io.Audio.Output()],
)
@classmethod
def execute(cls, vae, samples) -> io.NodeOutput:
audio = vae.decode(samples["samples"]).movedim(-1, 1)
std = torch.std(audio, dim=[1,2], keepdim=True) * 5.0
std[std < 1.0] = 1.0
audio /= std
return io.NodeOutput({"waveform": audio, "sample_rate": 44100})
class VAEEncodeAudio_V3(io.ComfyNodeV3):
@classmethod
def DEFINE_SCHEMA(cls):
return io.SchemaV3(
node_id="VAEEncodeAudio_V3",
category="latent/audio",
inputs=[
io.Audio.Input(id="audio"),
io.Vae.Input(id="vae"),
],
outputs=[io.Latent.Output()],
)
@classmethod
def execute(cls, vae, audio) -> io.NodeOutput:
sample_rate = audio["sample_rate"]
if 44100 != sample_rate:
waveform = torchaudio.functional.resample(audio["waveform"], sample_rate, 44100)
else:
waveform = audio["waveform"]
return io.NodeOutput({"samples": vae.encode(waveform.movedim(1, -1))})
def _save_audio(cls, audio, filename_prefix="ComfyUI", format="flac", quality="128k") -> io.NodeOutput:
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(
filename_prefix, folder_paths.get_output_directory()
)
# Prepare metadata dictionary
metadata = {}
if not args.disable_metadata:
if cls.hidden.prompt is not None:
metadata["prompt"] = json.dumps(cls.hidden.prompt)
if cls.hidden.extra_pnginfo is not None:
for x in cls.hidden.extra_pnginfo:
metadata[x] = json.dumps(cls.hidden.extra_pnginfo[x])
# Opus supported sample rates
OPUS_RATES = [8000, 12000, 16000, 24000, 48000]
results = []
for (batch_number, waveform) in enumerate(audio["waveform"].cpu()):
filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
file = f"{filename_with_batch_num}_{counter:05}_.{format}"
output_path = os.path.join(full_output_folder, file)
# Use original sample rate initially
sample_rate = audio["sample_rate"]
# Handle Opus sample rate requirements
if format == "opus":
if sample_rate > 48000:
sample_rate = 48000
elif sample_rate not in OPUS_RATES:
# Find the next highest supported rate
for rate in sorted(OPUS_RATES):
if rate > sample_rate:
sample_rate = rate
break
if sample_rate not in OPUS_RATES: # Fallback if still not supported
sample_rate = 48000
# Resample if necessary
if sample_rate != audio["sample_rate"]:
waveform = torchaudio.functional.resample(waveform, audio["sample_rate"], sample_rate)
# Create output with specified format
output_buffer = BytesIO()
output_container = av.open(output_buffer, mode='w', format=format)
# Set metadata on the container
for key, value in metadata.items():
output_container.metadata[key] = value
# Set up the output stream with appropriate properties
if format == "opus":
out_stream = output_container.add_stream("libopus", rate=sample_rate)
if quality == "64k":
out_stream.bit_rate = 64000
elif quality == "96k":
out_stream.bit_rate = 96000
elif quality == "128k":
out_stream.bit_rate = 128000
elif quality == "192k":
out_stream.bit_rate = 192000
elif quality == "320k":
out_stream.bit_rate = 320000
elif format == "mp3":
out_stream = output_container.add_stream("libmp3lame", rate=sample_rate)
if quality == "V0":
#TODO i would really love to support V3 and V5 but there doesn't seem to be a way to set the qscale level, the property below is a bool
out_stream.codec_context.qscale = 1
elif quality == "128k":
out_stream.bit_rate = 128000
elif quality == "320k":
out_stream.bit_rate = 320000
else: # format == "flac":
out_stream = output_container.add_stream("flac", rate=sample_rate)
frame = av.AudioFrame.from_ndarray(
waveform.movedim(0, 1).reshape(1, -1).float().numpy(),
format='flt',
layout='mono' if waveform.shape[0] == 1 else 'stereo',
)
frame.sample_rate = sample_rate
frame.pts = 0
output_container.mux(out_stream.encode(frame))
# Flush encoder
output_container.mux(out_stream.encode(None))
# Close containers
output_container.close()
# Write the output to file
output_buffer.seek(0)
with open(output_path, 'wb') as f:
f.write(output_buffer.getbuffer())
results.append(ui.SavedResult(file, subfolder, io.FolderType.output))
counter += 1
return io.NodeOutput(ui={"audio": results})
NODES_LIST: list[type[io.ComfyNodeV3]] = [
ConditioningStableAudio_V3,
EmptyLatentAudio_V3,
LoadAudio_V3,
PreviewAudio_V3,
SaveAudioMP3_V3,
SaveAudioOpus_V3,
SaveAudio_V3,
VAEDecodeAudio_V3,
VAEEncodeAudio_V3,
]