ComfyUI/comfy_extras/v3/nodes_clip_sdxl.py
2025-07-23 14:55:53 -07:00

80 lines
3.0 KiB
Python

from __future__ import annotations
import nodes
from comfy_api.v3 import io
class CLIPTextEncodeSDXL(io.ComfyNodeV3):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="CLIPTextEncodeSDXL_V3",
category="advanced/conditioning",
inputs=[
io.Clip.Input("clip"),
io.Int.Input("width", default=1024, min=0, max=nodes.MAX_RESOLUTION),
io.Int.Input("height", default=1024, min=0, max=nodes.MAX_RESOLUTION),
io.Int.Input("crop_w", default=0, min=0, max=nodes.MAX_RESOLUTION),
io.Int.Input("crop_h", default=0, min=0, max=nodes.MAX_RESOLUTION),
io.Int.Input("target_width", default=1024, min=0, max=nodes.MAX_RESOLUTION),
io.Int.Input("target_height", default=1024, min=0, max=nodes.MAX_RESOLUTION),
io.String.Input("text_g", multiline=True, dynamic_prompts=True),
io.String.Input("text_l", multiline=True, dynamic_prompts=True),
],
outputs=[io.Conditioning.Output()],
)
@classmethod
def execute(cls, clip, width, height, crop_w, crop_h, target_width, target_height, text_g, text_l) -> io.NodeOutput:
tokens = clip.tokenize(text_g)
tokens["l"] = clip.tokenize(text_l)["l"]
if len(tokens["l"]) != len(tokens["g"]):
empty = clip.tokenize("")
while len(tokens["l"]) < len(tokens["g"]):
tokens["l"] += empty["l"]
while len(tokens["l"]) > len(tokens["g"]):
tokens["g"] += empty["g"]
conditioning = clip.encode_from_tokens_scheduled(
tokens,
add_dict={
"width": width,
"height": height,
"crop_w": crop_w,
"crop_h": crop_h,
"target_width": target_width,
"target_height": target_height,
},
)
return io.NodeOutput(conditioning)
class CLIPTextEncodeSDXLRefiner(io.ComfyNodeV3):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="CLIPTextEncodeSDXLRefiner_V3",
category="advanced/conditioning",
inputs=[
io.Float.Input("ascore", default=6.0, min=0.0, max=1000.0, step=0.01),
io.Int.Input("width", default=1024, min=0, max=nodes.MAX_RESOLUTION),
io.Int.Input("height", default=1024, min=0, max=nodes.MAX_RESOLUTION),
io.String.Input("text", multiline=True, dynamic_prompts=True),
io.Clip.Input("clip"),
],
outputs=[io.Conditioning.Output()],
)
@classmethod
def execute(cls, ascore, width, height, text, clip) -> io.NodeOutput:
tokens = clip.tokenize(text)
conditioning = clip.encode_from_tokens_scheduled(
tokens, add_dict={"aesthetic_score": ascore, "width": width, "height": height}
)
return io.NodeOutput(conditioning)
NODES_LIST = [
CLIPTextEncodeSDXL,
CLIPTextEncodeSDXLRefiner,
]