mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-07-27 08:16:44 +00:00
146 lines
5.2 KiB
Python
146 lines
5.2 KiB
Python
from __future__ import annotations
|
|
|
|
import torch
|
|
|
|
import comfy.model_management
|
|
import comfy.sd
|
|
import folder_paths
|
|
import nodes
|
|
from comfy_api.latest import io
|
|
from comfy_extras.v3.nodes_slg import SkipLayerGuidanceDiT
|
|
|
|
|
|
class TripleCLIPLoader(io.ComfyNode):
|
|
@classmethod
|
|
def define_schema(cls):
|
|
return io.Schema(
|
|
node_id="TripleCLIPLoader_V3",
|
|
category="advanced/loaders",
|
|
description="[Recipes]\n\nsd3: clip-l, clip-g, t5",
|
|
inputs=[
|
|
io.Combo.Input("clip_name1", options=folder_paths.get_filename_list("text_encoders")),
|
|
io.Combo.Input("clip_name2", options=folder_paths.get_filename_list("text_encoders")),
|
|
io.Combo.Input("clip_name3", options=folder_paths.get_filename_list("text_encoders")),
|
|
],
|
|
outputs=[
|
|
io.Clip.Output(),
|
|
],
|
|
)
|
|
|
|
@classmethod
|
|
def execute(cls, clip_name1: str, clip_name2: str, clip_name3: str):
|
|
clip_path1 = folder_paths.get_full_path_or_raise("text_encoders", clip_name1)
|
|
clip_path2 = folder_paths.get_full_path_or_raise("text_encoders", clip_name2)
|
|
clip_path3 = folder_paths.get_full_path_or_raise("text_encoders", clip_name3)
|
|
clip = comfy.sd.load_clip(
|
|
ckpt_paths=[clip_path1, clip_path2, clip_path3],
|
|
embedding_directory=folder_paths.get_folder_paths("embeddings"),
|
|
)
|
|
return io.NodeOutput(clip)
|
|
|
|
|
|
class EmptySD3LatentImage(io.ComfyNode):
|
|
@classmethod
|
|
def define_schema(cls):
|
|
return io.Schema(
|
|
node_id="EmptySD3LatentImage_V3",
|
|
category="latent/sd3",
|
|
inputs=[
|
|
io.Int.Input("width", default=1024, min=16, max=nodes.MAX_RESOLUTION, step=16),
|
|
io.Int.Input("height", default=1024, min=16, max=nodes.MAX_RESOLUTION, step=16),
|
|
io.Int.Input("batch_size", default=1, min=1, max=4096),
|
|
],
|
|
outputs=[
|
|
io.Latent.Output(),
|
|
],
|
|
)
|
|
|
|
@classmethod
|
|
def execute(cls, width: int, height: int, batch_size=1):
|
|
latent = torch.zeros(
|
|
[batch_size, 16, height // 8, width // 8], device=comfy.model_management.intermediate_device()
|
|
)
|
|
return io.NodeOutput({"samples":latent})
|
|
|
|
|
|
class CLIPTextEncodeSD3(io.ComfyNode):
|
|
@classmethod
|
|
def define_schema(cls):
|
|
return io.Schema(
|
|
node_id="CLIPTextEncodeSD3_V3",
|
|
category="advanced/conditioning",
|
|
inputs=[
|
|
io.Clip.Input("clip"),
|
|
io.String.Input("clip_l", multiline=True, dynamic_prompts=True),
|
|
io.String.Input("clip_g", multiline=True, dynamic_prompts=True),
|
|
io.String.Input("t5xxl", multiline=True, dynamic_prompts=True),
|
|
io.Combo.Input("empty_padding", options=["none", "empty_prompt"]),
|
|
],
|
|
outputs=[
|
|
io.Conditioning.Output(),
|
|
],
|
|
)
|
|
|
|
@classmethod
|
|
def execute(cls, clip, clip_l, clip_g, t5xxl, empty_padding: str):
|
|
no_padding = empty_padding == "none"
|
|
|
|
tokens = clip.tokenize(clip_g)
|
|
if len(clip_g) == 0 and no_padding:
|
|
tokens["g"] = []
|
|
|
|
if len(clip_l) == 0 and no_padding:
|
|
tokens["l"] = []
|
|
else:
|
|
tokens["l"] = clip.tokenize(clip_l)["l"]
|
|
|
|
if len(t5xxl) == 0 and no_padding:
|
|
tokens["t5xxl"] = []
|
|
else:
|
|
tokens["t5xxl"] = clip.tokenize(t5xxl)["t5xxl"]
|
|
if len(tokens["l"]) != len(tokens["g"]):
|
|
empty = clip.tokenize("")
|
|
while len(tokens["l"]) < len(tokens["g"]):
|
|
tokens["l"] += empty["l"]
|
|
while len(tokens["l"]) > len(tokens["g"]):
|
|
tokens["g"] += empty["g"]
|
|
return io.NodeOutput(clip.encode_from_tokens_scheduled(tokens))
|
|
|
|
|
|
class SkipLayerGuidanceSD3(SkipLayerGuidanceDiT):
|
|
"""
|
|
Enhance guidance towards detailed dtructure by having another set of CFG negative with skipped layers.
|
|
Inspired by Perturbed Attention Guidance (https://arxiv.org/abs/2403.17377)
|
|
Experimental implementation by Dango233@StabilityAI.
|
|
"""
|
|
@classmethod
|
|
def define_schema(cls):
|
|
return io.Schema(
|
|
node_id="SkipLayerGuidanceSD3_V3",
|
|
category="advanced/guidance",
|
|
inputs=[
|
|
io.Model.Input("model"),
|
|
io.String.Input("layers", default="7, 8, 9", multiline=False),
|
|
io.Float.Input("scale", default=3.0, min=0.0, max=10.0, step=0.1),
|
|
io.Float.Input("start_percent", default=0.01, min=0.0, max=1.0, step=0.001),
|
|
io.Float.Input("end_percent", default=0.15, min=0.0, max=1.0, step=0.001),
|
|
],
|
|
outputs=[
|
|
io.Model.Output(),
|
|
],
|
|
is_experimental=True,
|
|
)
|
|
|
|
@classmethod
|
|
def execute(cls, model, layers: str, scale: float, start_percent: float, end_percent: float):
|
|
return super().execute(
|
|
model=model, scale=scale, start_percent=start_percent, end_percent=end_percent, double_layers=layers
|
|
)
|
|
|
|
NODES_LIST: list[type[io.ComfyNode]] = [
|
|
CLIPTextEncodeSD3,
|
|
EmptySD3LatentImage,
|
|
SkipLayerGuidanceSD3,
|
|
TripleCLIPLoader,
|
|
]
|