ComfyUI/comfy_extras/v3/nodes_images.py

381 lines
14 KiB
Python

import json
import os
import torch
import hashlib
import numpy as np
from PIL import Image, ImageOps, ImageSequence
from PIL.PngImagePlugin import PngInfo
from comfy_api.v3 import io, ui
from comfy.cli_args import args
import folder_paths
import node_helpers
class SaveImage_V3(io.ComfyNodeV3):
@classmethod
def DEFINE_SCHEMA(cls):
return io.SchemaV3(
node_id="SaveImage_V3",
display_name="Save Image _V3",
description="Saves the input images to your ComfyUI output directory.",
category="image",
inputs=[
io.Image.Input(
"images",
tooltip="The images to save.",
),
io.String.Input(
"filename_prefix",
default="ComfyUI",
tooltip="The prefix for the file to save. This may include formatting information such as %date:yyyy-MM-dd% or %Empty Latent Image.width% to include values from nodes.",
),
],
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
is_output_node=True,
)
@classmethod
def execute(cls, images, filename_prefix="ComfyUI") -> io.NodeOutput:
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(
filename_prefix, folder_paths.get_output_directory(), images[0].shape[1], images[0].shape[0]
)
results = []
for (batch_number, image) in enumerate(images):
i = 255. * image.cpu().numpy()
img = Image.fromarray(np.clip(i, 0, 255).astype(np.uint8))
metadata = None
if not args.disable_metadata:
metadata = PngInfo()
if cls.hidden.prompt is not None:
metadata.add_text("prompt", json.dumps(cls.hidden.prompt))
if cls.hidden.extra_pnginfo is not None:
for x in cls.hidden.extra_pnginfo:
metadata.add_text(x, json.dumps(cls.hidden.extra_pnginfo[x]))
filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
file = f"{filename_with_batch_num}_{counter:05}_.png"
img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=4)
results.append(ui.SavedResult(file, subfolder, io.FolderType.output))
counter += 1
return io.NodeOutput(ui={"images": results})
class SaveAnimatedPNG_V3(io.ComfyNodeV3):
@classmethod
def DEFINE_SCHEMA(cls):
return io.SchemaV3(
node_id="SaveAnimatedPNG_V3",
display_name="Save Animated PNG _V3",
category="image/animation",
inputs=[
io.Image.Input("images"),
io.String.Input("filename_prefix", default="ComfyUI"),
io.Float.Input("fps", default=6.0, min=0.01, max=1000.0, step=0.01),
io.Int.Input("compress_level", default=4, min=0, max=9),
],
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
is_output_node=True,
)
@classmethod
def execute(cls, images, fps, compress_level, filename_prefix="ComfyUI") -> io.NodeOutput:
full_output_folder, filename, counter, subfolder, filename_prefix = (
folder_paths.get_save_image_path(filename_prefix, folder_paths.get_output_directory(), images[0].shape[1], images[0].shape[0])
)
results = []
pil_images = []
for image in images:
img = Image.fromarray(np.clip(255. * image.cpu().numpy(), 0, 255).astype(np.uint8))
pil_images.append(img)
metadata = None
if not args.disable_metadata:
metadata = PngInfo()
if cls.hidden.prompt is not None:
metadata.add(
b"comf", "prompt".encode("latin-1", "strict") + b"\0" + json.dumps(cls.hidden.prompt).encode("latin-1", "strict"), after_idat=True
)
if cls.hidden.extra_pnginfo is not None:
for x in cls.hidden.extra_pnginfo:
metadata.add(
b"comf", x.encode("latin-1", "strict") + b"\0" + json.dumps(cls.hidden.extra_pnginfo[x]).encode("latin-1", "strict"), after_idat=True
)
file = f"{filename}_{counter:05}_.png"
pil_images[0].save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=compress_level, save_all=True, duration=int(1000.0/fps), append_images=pil_images[1:])
results.append(ui.SavedResult(file, subfolder, io.FolderType.output))
return io.NodeOutput(ui={"images": results, "animated": (True,) })
class SaveAnimatedWEBP_V3(io.ComfyNodeV3):
COMPRESS_METHODS = {"default": 4, "fastest": 0, "slowest": 6}
@classmethod
def DEFINE_SCHEMA(cls):
return io.SchemaV3(
node_id="SaveAnimatedWEBP_V3",
display_name="Save Animated WEBP _V3",
category="image/animation",
inputs=[
io.Image.Input("images"),
io.String.Input("filename_prefix", default="ComfyUI"),
io.Float.Input("fps", default=6.0, min=0.01, max=1000.0, step=0.01),
io.Boolean.Input("lossless", default=True),
io.Int.Input("quality", default=80, min=0, max=100),
io.Combo.Input("method", options=list(cls.COMPRESS_METHODS.keys())),
# "num_frames": ("INT", {"default": 0, "min": 0, "max": 8192}),
],
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
is_output_node=True,
)
@classmethod
def execute(cls, images, fps, filename_prefix, lossless, quality, method, num_frames=0) -> io.NodeOutput:
method = cls.COMPRESS_METHODS.get(method)
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, folder_paths.get_output_directory(), images[0].shape[1], images[0].shape[0])
results = []
pil_images = []
for image in images:
img = Image.fromarray(np.clip(255. * image.cpu().numpy(), 0, 255).astype(np.uint8))
pil_images.append(img)
metadata = pil_images[0].getexif()
if not args.disable_metadata:
if cls.hidden.prompt is not None:
metadata[0x0110] = "prompt:{}".format(json.dumps(cls.hidden.prompt))
if cls.hidden.extra_pnginfo is not None:
inital_exif = 0x010f
for x in cls.hidden.extra_pnginfo:
metadata[inital_exif] = "{}:{}".format(x, json.dumps(cls.hidden.extra_pnginfo[x]))
inital_exif -= 1
if num_frames == 0:
num_frames = len(pil_images)
for i in range(0, len(pil_images), num_frames):
file = f"{filename}_{counter:05}_.webp"
pil_images[i].save(
os.path.join(full_output_folder, file),
save_all=True, duration=int(1000.0/fps),
append_images=pil_images[i + 1:i + num_frames],
exif=metadata,
lossless=lossless,
quality=quality,
method=method,
)
results.append(ui.SavedResult(file, subfolder, io.FolderType.output))
counter += 1
return io.NodeOutput(ui={"images": results, "animated": (num_frames != 1,)})
class PreviewImage_V3(io.ComfyNodeV3):
@classmethod
def DEFINE_SCHEMA(cls):
return io.SchemaV3(
node_id="PreviewImage_V3",
display_name="Preview Image _V3",
description="Preview the input images.",
category="image",
inputs=[
io.Image.Input("images", tooltip="The images to preview."),
],
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
is_output_node=True,
)
@classmethod
def execute(cls, images) -> io.NodeOutput:
return io.NodeOutput(ui=ui.PreviewImage(images, cls=cls))
class LoadImage_V3(io.ComfyNodeV3):
@classmethod
def DEFINE_SCHEMA(cls):
return io.SchemaV3(
node_id="LoadImage_V3",
display_name="Load Image _V3",
category="image",
inputs=[
io.Combo.Input(
"image",
upload=io.UploadType.image,
image_folder=io.FolderType.input,
options=cls.get_files_options(),
),
],
outputs=[
io.Image.Output(),
io.Mask.Output(),
],
)
@classmethod
def get_files_options(cls) -> list[str]:
target_dir = folder_paths.get_input_directory()
files = [f for f in os.listdir(target_dir) if os.path.isfile(os.path.join(target_dir, f))]
return sorted(folder_paths.filter_files_content_types(files, ["image"]))
@classmethod
def execute(cls, image) -> io.NodeOutput:
img = node_helpers.pillow(Image.open, folder_paths.get_annotated_filepath(image))
output_images = []
output_masks = []
w, h = None, None
excluded_formats = ['MPO']
for i in ImageSequence.Iterator(img):
i = node_helpers.pillow(ImageOps.exif_transpose, i)
if i.mode == 'I':
i = i.point(lambda i: i * (1 / 255))
image = i.convert("RGB")
if len(output_images) == 0:
w = image.size[0]
h = image.size[1]
if image.size[0] != w or image.size[1] != h:
continue
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
if 'A' in i.getbands():
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
mask = 1. - torch.from_numpy(mask)
elif i.mode == 'P' and 'transparency' in i.info:
mask = np.array(i.convert('RGBA').getchannel('A')).astype(np.float32) / 255.0
mask = 1. - torch.from_numpy(mask)
else:
mask = torch.zeros((64,64), dtype=torch.float32, device="cpu")
output_images.append(image)
output_masks.append(mask.unsqueeze(0))
if len(output_images) > 1 and img.format not in excluded_formats:
output_image = torch.cat(output_images, dim=0)
output_mask = torch.cat(output_masks, dim=0)
else:
output_image = output_images[0]
output_mask = output_masks[0]
return io.NodeOutput(output_image, output_mask)
@classmethod
def fingerprint_inputs(s, image):
image_path = folder_paths.get_annotated_filepath(image)
m = hashlib.sha256()
with open(image_path, 'rb') as f:
m.update(f.read())
return m.digest().hex()
@classmethod
def validate_inputs(s, image):
if not folder_paths.exists_annotated_filepath(image):
return "Invalid image file: {}".format(image)
return True
class LoadImageOutput_V3(io.ComfyNodeV3):
@classmethod
def DEFINE_SCHEMA(cls):
return io.SchemaV3(
node_id="LoadImageOutput_V3",
display_name="Load Image (from Outputs) _V3",
description="Load an image from the output folder. "
"When the refresh button is clicked, the node will update the image list "
"and automatically select the first image, allowing for easy iteration.",
category="image",
inputs=[
io.Combo.Input(
"image",
upload=io.UploadType.image,
image_folder=io.FolderType.output,
remote=io.RemoteOptions(
route="/internal/files/output",
refresh_button=True,
control_after_refresh="first",
),
),
],
outputs=[
io.Image.Output(),
io.Mask.Output(),
],
)
@classmethod
def execute(cls, image) -> io.NodeOutput:
img = node_helpers.pillow(Image.open, folder_paths.get_annotated_filepath(image))
output_images = []
output_masks = []
w, h = None, None
excluded_formats = ['MPO']
for i in ImageSequence.Iterator(img):
i = node_helpers.pillow(ImageOps.exif_transpose, i)
if i.mode == 'I':
i = i.point(lambda i: i * (1 / 255))
image = i.convert("RGB")
if len(output_images) == 0:
w = image.size[0]
h = image.size[1]
if image.size[0] != w or image.size[1] != h:
continue
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
if 'A' in i.getbands():
mask = np.array(i.getchannel('A')).astype(np.float32) / 255.0
mask = 1. - torch.from_numpy(mask)
elif i.mode == 'P' and 'transparency' in i.info:
mask = np.array(i.convert('RGBA').getchannel('A')).astype(np.float32) / 255.0
mask = 1. - torch.from_numpy(mask)
else:
mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
output_images.append(image)
output_masks.append(mask.unsqueeze(0))
if len(output_images) > 1 and img.format not in excluded_formats:
output_image = torch.cat(output_images, dim=0)
output_mask = torch.cat(output_masks, dim=0)
else:
output_image = output_images[0]
output_mask = output_masks[0]
return io.NodeOutput(output_image, output_mask)
@classmethod
def fingerprint_inputs(s, image):
image_path = folder_paths.get_annotated_filepath(image)
m = hashlib.sha256()
with open(image_path, 'rb') as f:
m.update(f.read())
return m.digest().hex()
@classmethod
def validate_inputs(s, image):
if not folder_paths.exists_annotated_filepath(image):
return "Invalid image file: {}".format(image)
return True
NODES_LIST: list[type[io.ComfyNodeV3]] = [
SaveAnimatedPNG_V3,
SaveAnimatedWEBP_V3,
SaveImage_V3,
PreviewImage_V3,
LoadImage_V3,
LoadImageOutput_V3,
]