mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-09-10 19:46:38 +00:00
1320 lines
54 KiB
Python
1320 lines
54 KiB
Python
# original version: https://github.com/Wan-Video/Wan2.1/blob/main/wan/modules/model.py
|
|
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
|
import math
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from einops import rearrange
|
|
|
|
from comfy.ldm.modules.attention import optimized_attention
|
|
from comfy.ldm.flux.layers import EmbedND
|
|
from comfy.ldm.flux.math import apply_rope
|
|
import comfy.ldm.common_dit
|
|
import comfy.model_management
|
|
import comfy.patcher_extension
|
|
|
|
|
|
def sinusoidal_embedding_1d(dim, position):
|
|
# preprocess
|
|
assert dim % 2 == 0
|
|
half = dim // 2
|
|
position = position.type(torch.float32)
|
|
|
|
# calculation
|
|
sinusoid = torch.outer(
|
|
position, torch.pow(10000, -torch.arange(half).to(position).div(half)))
|
|
x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1)
|
|
return x
|
|
|
|
|
|
class WanSelfAttention(nn.Module):
|
|
|
|
def __init__(self,
|
|
dim,
|
|
num_heads,
|
|
window_size=(-1, -1),
|
|
qk_norm=True,
|
|
eps=1e-6, operation_settings={}):
|
|
assert dim % num_heads == 0
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.num_heads = num_heads
|
|
self.head_dim = dim // num_heads
|
|
self.window_size = window_size
|
|
self.qk_norm = qk_norm
|
|
self.eps = eps
|
|
|
|
# layers
|
|
self.q = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
|
self.k = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
|
self.v = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
|
self.o = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
|
self.norm_q = operation_settings.get("operations").RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
|
|
self.norm_k = operation_settings.get("operations").RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
|
|
|
|
def forward(self, x, freqs):
|
|
r"""
|
|
Args:
|
|
x(Tensor): Shape [B, L, num_heads, C / num_heads]
|
|
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
|
|
"""
|
|
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
|
|
|
|
# query, key, value function
|
|
def qkv_fn(x):
|
|
q = self.norm_q(self.q(x)).view(b, s, n, d)
|
|
k = self.norm_k(self.k(x)).view(b, s, n, d)
|
|
v = self.v(x).view(b, s, n * d)
|
|
return q, k, v
|
|
|
|
q, k, v = qkv_fn(x)
|
|
q, k = apply_rope(q, k, freqs)
|
|
|
|
x = optimized_attention(
|
|
q.view(b, s, n * d),
|
|
k.view(b, s, n * d),
|
|
v,
|
|
heads=self.num_heads,
|
|
)
|
|
|
|
x = self.o(x)
|
|
return x
|
|
|
|
|
|
class WanT2VCrossAttention(WanSelfAttention):
|
|
|
|
def forward(self, x, context, **kwargs):
|
|
r"""
|
|
Args:
|
|
x(Tensor): Shape [B, L1, C]
|
|
context(Tensor): Shape [B, L2, C]
|
|
"""
|
|
# compute query, key, value
|
|
q = self.norm_q(self.q(x))
|
|
k = self.norm_k(self.k(context))
|
|
v = self.v(context)
|
|
|
|
# compute attention
|
|
x = optimized_attention(q, k, v, heads=self.num_heads)
|
|
|
|
x = self.o(x)
|
|
return x
|
|
|
|
|
|
class WanI2VCrossAttention(WanSelfAttention):
|
|
|
|
def __init__(self,
|
|
dim,
|
|
num_heads,
|
|
window_size=(-1, -1),
|
|
qk_norm=True,
|
|
eps=1e-6, operation_settings={}):
|
|
super().__init__(dim, num_heads, window_size, qk_norm, eps, operation_settings=operation_settings)
|
|
|
|
self.k_img = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
|
self.v_img = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
|
# self.alpha = nn.Parameter(torch.zeros((1, )))
|
|
self.norm_k_img = operation_settings.get("operations").RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity()
|
|
|
|
def forward(self, x, context, context_img_len):
|
|
r"""
|
|
Args:
|
|
x(Tensor): Shape [B, L1, C]
|
|
context(Tensor): Shape [B, L2, C]
|
|
"""
|
|
context_img = context[:, :context_img_len]
|
|
context = context[:, context_img_len:]
|
|
|
|
# compute query, key, value
|
|
q = self.norm_q(self.q(x))
|
|
k = self.norm_k(self.k(context))
|
|
v = self.v(context)
|
|
k_img = self.norm_k_img(self.k_img(context_img))
|
|
v_img = self.v_img(context_img)
|
|
img_x = optimized_attention(q, k_img, v_img, heads=self.num_heads)
|
|
# compute attention
|
|
x = optimized_attention(q, k, v, heads=self.num_heads)
|
|
|
|
# output
|
|
x = x + img_x
|
|
x = self.o(x)
|
|
return x
|
|
|
|
|
|
WAN_CROSSATTENTION_CLASSES = {
|
|
't2v_cross_attn': WanT2VCrossAttention,
|
|
'i2v_cross_attn': WanI2VCrossAttention,
|
|
}
|
|
|
|
|
|
def repeat_e(e, x):
|
|
repeats = 1
|
|
if e.size(1) > 1:
|
|
repeats = x.size(1) // e.size(1)
|
|
if repeats == 1:
|
|
return e
|
|
if repeats * e.size(1) == x.size(1):
|
|
return torch.repeat_interleave(e, repeats, dim=1)
|
|
else:
|
|
return torch.repeat_interleave(e, repeats + 1, dim=1)[:, :x.size(1)]
|
|
|
|
|
|
class WanAttentionBlock(nn.Module):
|
|
|
|
def __init__(self,
|
|
cross_attn_type,
|
|
dim,
|
|
ffn_dim,
|
|
num_heads,
|
|
window_size=(-1, -1),
|
|
qk_norm=True,
|
|
cross_attn_norm=False,
|
|
eps=1e-6, operation_settings={}):
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.ffn_dim = ffn_dim
|
|
self.num_heads = num_heads
|
|
self.window_size = window_size
|
|
self.qk_norm = qk_norm
|
|
self.cross_attn_norm = cross_attn_norm
|
|
self.eps = eps
|
|
|
|
# layers
|
|
self.norm1 = operation_settings.get("operations").LayerNorm(dim, eps, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
|
self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm,
|
|
eps, operation_settings=operation_settings)
|
|
self.norm3 = operation_settings.get("operations").LayerNorm(
|
|
dim, eps,
|
|
elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if cross_attn_norm else nn.Identity()
|
|
self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](dim,
|
|
num_heads,
|
|
(-1, -1),
|
|
qk_norm,
|
|
eps, operation_settings=operation_settings)
|
|
self.norm2 = operation_settings.get("operations").LayerNorm(dim, eps, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
|
self.ffn = nn.Sequential(
|
|
operation_settings.get("operations").Linear(dim, ffn_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), nn.GELU(approximate='tanh'),
|
|
operation_settings.get("operations").Linear(ffn_dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
|
|
|
|
# modulation
|
|
self.modulation = nn.Parameter(torch.empty(1, 6, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
|
|
|
|
def forward(
|
|
self,
|
|
x,
|
|
e,
|
|
freqs,
|
|
context,
|
|
context_img_len=257,
|
|
):
|
|
r"""
|
|
Args:
|
|
x(Tensor): Shape [B, L, C]
|
|
e(Tensor): Shape [B, 6, C]
|
|
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
|
|
"""
|
|
# assert e.dtype == torch.float32
|
|
|
|
if e.ndim < 4:
|
|
e = (comfy.model_management.cast_to(self.modulation, dtype=x.dtype, device=x.device) + e).chunk(6, dim=1)
|
|
else:
|
|
e = (comfy.model_management.cast_to(self.modulation, dtype=x.dtype, device=x.device).unsqueeze(0) + e).unbind(2)
|
|
# assert e[0].dtype == torch.float32
|
|
|
|
# self-attention
|
|
y = self.self_attn(
|
|
torch.addcmul(repeat_e(e[0], x), self.norm1(x), 1 + repeat_e(e[1], x)),
|
|
freqs)
|
|
|
|
x = torch.addcmul(x, y, repeat_e(e[2], x))
|
|
|
|
# cross-attention & ffn
|
|
x = x + self.cross_attn(self.norm3(x), context, context_img_len=context_img_len)
|
|
y = self.ffn(torch.addcmul(repeat_e(e[3], x), self.norm2(x), 1 + repeat_e(e[4], x)))
|
|
x = torch.addcmul(x, y, repeat_e(e[5], x))
|
|
return x
|
|
|
|
|
|
class VaceWanAttentionBlock(WanAttentionBlock):
|
|
def __init__(
|
|
self,
|
|
cross_attn_type,
|
|
dim,
|
|
ffn_dim,
|
|
num_heads,
|
|
window_size=(-1, -1),
|
|
qk_norm=True,
|
|
cross_attn_norm=False,
|
|
eps=1e-6,
|
|
block_id=0,
|
|
operation_settings={}
|
|
):
|
|
super().__init__(cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps, operation_settings=operation_settings)
|
|
self.block_id = block_id
|
|
if block_id == 0:
|
|
self.before_proj = operation_settings.get("operations").Linear(self.dim, self.dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
|
self.after_proj = operation_settings.get("operations").Linear(self.dim, self.dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
|
|
|
def forward(self, c, x, **kwargs):
|
|
if self.block_id == 0:
|
|
c = self.before_proj(c) + x
|
|
c = super().forward(c, **kwargs)
|
|
c_skip = self.after_proj(c)
|
|
return c_skip, c
|
|
|
|
|
|
class WanCamAdapter(nn.Module):
|
|
def __init__(self, in_dim, out_dim, kernel_size, stride, num_residual_blocks=1, operation_settings={}):
|
|
super(WanCamAdapter, self).__init__()
|
|
|
|
# Pixel Unshuffle: reduce spatial dimensions by a factor of 8
|
|
self.pixel_unshuffle = nn.PixelUnshuffle(downscale_factor=8)
|
|
|
|
# Convolution: reduce spatial dimensions by a factor
|
|
# of 2 (without overlap)
|
|
self.conv = operation_settings.get("operations").Conv2d(in_dim * 64, out_dim, kernel_size=kernel_size, stride=stride, padding=0, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
|
|
|
# Residual blocks for feature extraction
|
|
self.residual_blocks = nn.Sequential(
|
|
*[WanCamResidualBlock(out_dim, operation_settings = operation_settings) for _ in range(num_residual_blocks)]
|
|
)
|
|
|
|
def forward(self, x):
|
|
# Reshape to merge the frame dimension into batch
|
|
bs, c, f, h, w = x.size()
|
|
x = x.permute(0, 2, 1, 3, 4).contiguous().view(bs * f, c, h, w)
|
|
|
|
# Pixel Unshuffle operation
|
|
x_unshuffled = self.pixel_unshuffle(x)
|
|
|
|
# Convolution operation
|
|
x_conv = self.conv(x_unshuffled)
|
|
|
|
# Feature extraction with residual blocks
|
|
out = self.residual_blocks(x_conv)
|
|
|
|
# Reshape to restore original bf dimension
|
|
out = out.view(bs, f, out.size(1), out.size(2), out.size(3))
|
|
|
|
# Permute dimensions to reorder (if needed), e.g., swap channels and feature frames
|
|
out = out.permute(0, 2, 1, 3, 4)
|
|
|
|
return out
|
|
|
|
|
|
class WanCamResidualBlock(nn.Module):
|
|
def __init__(self, dim, operation_settings={}):
|
|
super(WanCamResidualBlock, self).__init__()
|
|
self.conv1 = operation_settings.get("operations").Conv2d(dim, dim, kernel_size=3, padding=1, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
|
self.relu = nn.ReLU(inplace=True)
|
|
self.conv2 = operation_settings.get("operations").Conv2d(dim, dim, kernel_size=3, padding=1, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
|
|
|
def forward(self, x):
|
|
residual = x
|
|
out = self.relu(self.conv1(x))
|
|
out = self.conv2(out)
|
|
out += residual
|
|
return out
|
|
|
|
|
|
class Head(nn.Module):
|
|
|
|
def __init__(self, dim, out_dim, patch_size, eps=1e-6, operation_settings={}):
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.out_dim = out_dim
|
|
self.patch_size = patch_size
|
|
self.eps = eps
|
|
|
|
# layers
|
|
out_dim = math.prod(patch_size) * out_dim
|
|
self.norm = operation_settings.get("operations").LayerNorm(dim, eps, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
|
self.head = operation_settings.get("operations").Linear(dim, out_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
|
|
|
# modulation
|
|
self.modulation = nn.Parameter(torch.empty(1, 2, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
|
|
|
|
def forward(self, x, e):
|
|
r"""
|
|
Args:
|
|
x(Tensor): Shape [B, L1, C]
|
|
e(Tensor): Shape [B, C]
|
|
"""
|
|
# assert e.dtype == torch.float32
|
|
if e.ndim < 3:
|
|
e = (comfy.model_management.cast_to(self.modulation, dtype=x.dtype, device=x.device) + e.unsqueeze(1)).chunk(2, dim=1)
|
|
else:
|
|
e = (comfy.model_management.cast_to(self.modulation, dtype=x.dtype, device=x.device).unsqueeze(0) + e.unsqueeze(2)).unbind(2)
|
|
|
|
x = (self.head(torch.addcmul(repeat_e(e[0], x), self.norm(x), 1 + repeat_e(e[1], x))))
|
|
return x
|
|
|
|
|
|
class MLPProj(torch.nn.Module):
|
|
|
|
def __init__(self, in_dim, out_dim, flf_pos_embed_token_number=None, operation_settings={}):
|
|
super().__init__()
|
|
|
|
self.proj = torch.nn.Sequential(
|
|
operation_settings.get("operations").LayerNorm(in_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), operation_settings.get("operations").Linear(in_dim, in_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")),
|
|
torch.nn.GELU(), operation_settings.get("operations").Linear(in_dim, out_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")),
|
|
operation_settings.get("operations").LayerNorm(out_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
|
|
|
|
if flf_pos_embed_token_number is not None:
|
|
self.emb_pos = nn.Parameter(torch.empty((1, flf_pos_embed_token_number, in_dim), device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
|
|
else:
|
|
self.emb_pos = None
|
|
|
|
def forward(self, image_embeds):
|
|
if self.emb_pos is not None:
|
|
image_embeds = image_embeds[:, :self.emb_pos.shape[1]] + comfy.model_management.cast_to(self.emb_pos[:, :image_embeds.shape[1]], dtype=image_embeds.dtype, device=image_embeds.device)
|
|
|
|
clip_extra_context_tokens = self.proj(image_embeds)
|
|
return clip_extra_context_tokens
|
|
|
|
|
|
class WanModel(torch.nn.Module):
|
|
r"""
|
|
Wan diffusion backbone supporting both text-to-video and image-to-video.
|
|
"""
|
|
|
|
def __init__(self,
|
|
model_type='t2v',
|
|
patch_size=(1, 2, 2),
|
|
text_len=512,
|
|
in_dim=16,
|
|
dim=2048,
|
|
ffn_dim=8192,
|
|
freq_dim=256,
|
|
text_dim=4096,
|
|
out_dim=16,
|
|
num_heads=16,
|
|
num_layers=32,
|
|
window_size=(-1, -1),
|
|
qk_norm=True,
|
|
cross_attn_norm=True,
|
|
eps=1e-6,
|
|
flf_pos_embed_token_number=None,
|
|
in_dim_ref_conv=None,
|
|
image_model=None,
|
|
device=None,
|
|
dtype=None,
|
|
operations=None,
|
|
):
|
|
r"""
|
|
Initialize the diffusion model backbone.
|
|
|
|
Args:
|
|
model_type (`str`, *optional*, defaults to 't2v'):
|
|
Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video)
|
|
patch_size (`tuple`, *optional*, defaults to (1, 2, 2)):
|
|
3D patch dimensions for video embedding (t_patch, h_patch, w_patch)
|
|
text_len (`int`, *optional*, defaults to 512):
|
|
Fixed length for text embeddings
|
|
in_dim (`int`, *optional*, defaults to 16):
|
|
Input video channels (C_in)
|
|
dim (`int`, *optional*, defaults to 2048):
|
|
Hidden dimension of the transformer
|
|
ffn_dim (`int`, *optional*, defaults to 8192):
|
|
Intermediate dimension in feed-forward network
|
|
freq_dim (`int`, *optional*, defaults to 256):
|
|
Dimension for sinusoidal time embeddings
|
|
text_dim (`int`, *optional*, defaults to 4096):
|
|
Input dimension for text embeddings
|
|
out_dim (`int`, *optional*, defaults to 16):
|
|
Output video channels (C_out)
|
|
num_heads (`int`, *optional*, defaults to 16):
|
|
Number of attention heads
|
|
num_layers (`int`, *optional*, defaults to 32):
|
|
Number of transformer blocks
|
|
window_size (`tuple`, *optional*, defaults to (-1, -1)):
|
|
Window size for local attention (-1 indicates global attention)
|
|
qk_norm (`bool`, *optional*, defaults to True):
|
|
Enable query/key normalization
|
|
cross_attn_norm (`bool`, *optional*, defaults to False):
|
|
Enable cross-attention normalization
|
|
eps (`float`, *optional*, defaults to 1e-6):
|
|
Epsilon value for normalization layers
|
|
"""
|
|
|
|
super().__init__()
|
|
self.dtype = dtype
|
|
operation_settings = {"operations": operations, "device": device, "dtype": dtype}
|
|
|
|
assert model_type in ['t2v', 'i2v']
|
|
self.model_type = model_type
|
|
|
|
self.patch_size = patch_size
|
|
self.text_len = text_len
|
|
self.in_dim = in_dim
|
|
self.dim = dim
|
|
self.ffn_dim = ffn_dim
|
|
self.freq_dim = freq_dim
|
|
self.text_dim = text_dim
|
|
self.out_dim = out_dim
|
|
self.num_heads = num_heads
|
|
self.num_layers = num_layers
|
|
self.window_size = window_size
|
|
self.qk_norm = qk_norm
|
|
self.cross_attn_norm = cross_attn_norm
|
|
self.eps = eps
|
|
|
|
# embeddings
|
|
self.patch_embedding = operations.Conv3d(
|
|
in_dim, dim, kernel_size=patch_size, stride=patch_size, device=operation_settings.get("device"), dtype=torch.float32)
|
|
self.text_embedding = nn.Sequential(
|
|
operations.Linear(text_dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), nn.GELU(approximate='tanh'),
|
|
operations.Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
|
|
|
|
self.time_embedding = nn.Sequential(
|
|
operations.Linear(freq_dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), nn.SiLU(), operations.Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
|
|
self.time_projection = nn.Sequential(nn.SiLU(), operations.Linear(dim, dim * 6, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")))
|
|
|
|
# blocks
|
|
cross_attn_type = 't2v_cross_attn' if model_type == 't2v' else 'i2v_cross_attn'
|
|
self.blocks = nn.ModuleList([
|
|
WanAttentionBlock(cross_attn_type, dim, ffn_dim, num_heads,
|
|
window_size, qk_norm, cross_attn_norm, eps, operation_settings=operation_settings)
|
|
for _ in range(num_layers)
|
|
])
|
|
|
|
# head
|
|
self.head = Head(dim, out_dim, patch_size, eps, operation_settings=operation_settings)
|
|
|
|
d = dim // num_heads
|
|
self.rope_embedder = EmbedND(dim=d, theta=10000.0, axes_dim=[d - 4 * (d // 6), 2 * (d // 6), 2 * (d // 6)])
|
|
|
|
if model_type == 'i2v':
|
|
self.img_emb = MLPProj(1280, dim, flf_pos_embed_token_number=flf_pos_embed_token_number, operation_settings=operation_settings)
|
|
else:
|
|
self.img_emb = None
|
|
|
|
if in_dim_ref_conv is not None:
|
|
self.ref_conv = operations.Conv2d(in_dim_ref_conv, dim, kernel_size=patch_size[1:], stride=patch_size[1:], device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
|
|
else:
|
|
self.ref_conv = None
|
|
|
|
def forward_orig(
|
|
self,
|
|
x,
|
|
t,
|
|
context,
|
|
clip_fea=None,
|
|
freqs=None,
|
|
transformer_options={},
|
|
**kwargs,
|
|
):
|
|
r"""
|
|
Forward pass through the diffusion model
|
|
|
|
Args:
|
|
x (Tensor):
|
|
List of input video tensors with shape [B, C_in, F, H, W]
|
|
t (Tensor):
|
|
Diffusion timesteps tensor of shape [B]
|
|
context (List[Tensor]):
|
|
List of text embeddings each with shape [B, L, C]
|
|
seq_len (`int`):
|
|
Maximum sequence length for positional encoding
|
|
clip_fea (Tensor, *optional*):
|
|
CLIP image features for image-to-video mode
|
|
y (List[Tensor], *optional*):
|
|
Conditional video inputs for image-to-video mode, same shape as x
|
|
|
|
Returns:
|
|
List[Tensor]:
|
|
List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
|
|
"""
|
|
# embeddings
|
|
x = self.patch_embedding(x.float()).to(x.dtype)
|
|
grid_sizes = x.shape[2:]
|
|
x = x.flatten(2).transpose(1, 2)
|
|
|
|
# time embeddings
|
|
e = self.time_embedding(
|
|
sinusoidal_embedding_1d(self.freq_dim, t.flatten()).to(dtype=x[0].dtype))
|
|
e = e.reshape(t.shape[0], -1, e.shape[-1])
|
|
e0 = self.time_projection(e).unflatten(2, (6, self.dim))
|
|
|
|
full_ref = None
|
|
if self.ref_conv is not None:
|
|
full_ref = kwargs.get("reference_latent", None)
|
|
if full_ref is not None:
|
|
full_ref = self.ref_conv(full_ref).flatten(2).transpose(1, 2)
|
|
x = torch.concat((full_ref, x), dim=1)
|
|
|
|
# context
|
|
context = self.text_embedding(context)
|
|
|
|
context_img_len = None
|
|
if clip_fea is not None:
|
|
if self.img_emb is not None:
|
|
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
|
|
context = torch.concat([context_clip, context], dim=1)
|
|
context_img_len = clip_fea.shape[-2]
|
|
|
|
patches_replace = transformer_options.get("patches_replace", {})
|
|
blocks_replace = patches_replace.get("dit", {})
|
|
for i, block in enumerate(self.blocks):
|
|
if ("double_block", i) in blocks_replace:
|
|
def block_wrap(args):
|
|
out = {}
|
|
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len)
|
|
return out
|
|
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap})
|
|
x = out["img"]
|
|
else:
|
|
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
|
|
|
|
# head
|
|
x = self.head(x, e)
|
|
|
|
if full_ref is not None:
|
|
x = x[:, full_ref.shape[1]:]
|
|
|
|
# unpatchify
|
|
x = self.unpatchify(x, grid_sizes)
|
|
return x
|
|
|
|
def rope_encode(self, t, h, w, t_start=0, steps_t=None, steps_h=None, steps_w=None, device=None, dtype=None):
|
|
patch_size = self.patch_size
|
|
t_len = ((t + (patch_size[0] // 2)) // patch_size[0])
|
|
h_len = ((h + (patch_size[1] // 2)) // patch_size[1])
|
|
w_len = ((w + (patch_size[2] // 2)) // patch_size[2])
|
|
|
|
if steps_t is None:
|
|
steps_t = t_len
|
|
if steps_h is None:
|
|
steps_h = h_len
|
|
if steps_w is None:
|
|
steps_w = w_len
|
|
|
|
img_ids = torch.zeros((steps_t, steps_h, steps_w, 3), device=device, dtype=dtype)
|
|
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(t_start, t_start + (t_len - 1), steps=steps_t, device=device, dtype=dtype).reshape(-1, 1, 1)
|
|
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(0, h_len - 1, steps=steps_h, device=device, dtype=dtype).reshape(1, -1, 1)
|
|
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(0, w_len - 1, steps=steps_w, device=device, dtype=dtype).reshape(1, 1, -1)
|
|
img_ids = img_ids.reshape(1, -1, img_ids.shape[-1])
|
|
|
|
freqs = self.rope_embedder(img_ids).movedim(1, 2)
|
|
return freqs
|
|
|
|
def forward(self, x, timestep, context, clip_fea=None, time_dim_concat=None, transformer_options={}, **kwargs):
|
|
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
|
|
self._forward,
|
|
self,
|
|
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
|
|
).execute(x, timestep, context, clip_fea, time_dim_concat, transformer_options, **kwargs)
|
|
|
|
def _forward(self, x, timestep, context, clip_fea=None, time_dim_concat=None, transformer_options={}, **kwargs):
|
|
bs, c, t, h, w = x.shape
|
|
x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size)
|
|
|
|
t_len = t
|
|
if time_dim_concat is not None:
|
|
time_dim_concat = comfy.ldm.common_dit.pad_to_patch_size(time_dim_concat, self.patch_size)
|
|
x = torch.cat([x, time_dim_concat], dim=2)
|
|
t_len = x.shape[2]
|
|
|
|
if self.ref_conv is not None and "reference_latent" in kwargs:
|
|
t_len += 1
|
|
|
|
freqs = self.rope_encode(t_len, h, w, device=x.device, dtype=x.dtype)
|
|
return self.forward_orig(x, timestep, context, clip_fea=clip_fea, freqs=freqs, transformer_options=transformer_options, **kwargs)[:, :, :t, :h, :w]
|
|
|
|
def unpatchify(self, x, grid_sizes):
|
|
r"""
|
|
Reconstruct video tensors from patch embeddings.
|
|
|
|
Args:
|
|
x (List[Tensor]):
|
|
List of patchified features, each with shape [L, C_out * prod(patch_size)]
|
|
grid_sizes (Tensor):
|
|
Original spatial-temporal grid dimensions before patching,
|
|
shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches)
|
|
|
|
Returns:
|
|
List[Tensor]:
|
|
Reconstructed video tensors with shape [L, C_out, F, H / 8, W / 8]
|
|
"""
|
|
|
|
c = self.out_dim
|
|
u = x
|
|
b = u.shape[0]
|
|
u = u[:, :math.prod(grid_sizes)].view(b, *grid_sizes, *self.patch_size, c)
|
|
u = torch.einsum('bfhwpqrc->bcfphqwr', u)
|
|
u = u.reshape(b, c, *[i * j for i, j in zip(grid_sizes, self.patch_size)])
|
|
return u
|
|
|
|
|
|
class VaceWanModel(WanModel):
|
|
r"""
|
|
Wan diffusion backbone supporting both text-to-video and image-to-video.
|
|
"""
|
|
|
|
def __init__(self,
|
|
model_type='vace',
|
|
patch_size=(1, 2, 2),
|
|
text_len=512,
|
|
in_dim=16,
|
|
dim=2048,
|
|
ffn_dim=8192,
|
|
freq_dim=256,
|
|
text_dim=4096,
|
|
out_dim=16,
|
|
num_heads=16,
|
|
num_layers=32,
|
|
window_size=(-1, -1),
|
|
qk_norm=True,
|
|
cross_attn_norm=True,
|
|
eps=1e-6,
|
|
flf_pos_embed_token_number=None,
|
|
image_model=None,
|
|
vace_layers=None,
|
|
vace_in_dim=None,
|
|
device=None,
|
|
dtype=None,
|
|
operations=None,
|
|
):
|
|
|
|
super().__init__(model_type='t2v', patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, flf_pos_embed_token_number=flf_pos_embed_token_number, image_model=image_model, device=device, dtype=dtype, operations=operations)
|
|
operation_settings = {"operations": operations, "device": device, "dtype": dtype}
|
|
|
|
# Vace
|
|
if vace_layers is not None:
|
|
self.vace_layers = vace_layers
|
|
self.vace_in_dim = vace_in_dim
|
|
# vace blocks
|
|
self.vace_blocks = nn.ModuleList([
|
|
VaceWanAttentionBlock('t2v_cross_attn', self.dim, self.ffn_dim, self.num_heads, self.window_size, self.qk_norm, self.cross_attn_norm, self.eps, block_id=i, operation_settings=operation_settings)
|
|
for i in range(self.vace_layers)
|
|
])
|
|
|
|
self.vace_layers_mapping = {i: n for n, i in enumerate(range(0, self.num_layers, self.num_layers // self.vace_layers))}
|
|
# vace patch embeddings
|
|
self.vace_patch_embedding = operations.Conv3d(
|
|
self.vace_in_dim, self.dim, kernel_size=self.patch_size, stride=self.patch_size, device=device, dtype=torch.float32
|
|
)
|
|
|
|
def forward_orig(
|
|
self,
|
|
x,
|
|
t,
|
|
context,
|
|
vace_context,
|
|
vace_strength,
|
|
clip_fea=None,
|
|
freqs=None,
|
|
transformer_options={},
|
|
**kwargs,
|
|
):
|
|
# embeddings
|
|
x = self.patch_embedding(x.float()).to(x.dtype)
|
|
grid_sizes = x.shape[2:]
|
|
x = x.flatten(2).transpose(1, 2)
|
|
|
|
# time embeddings
|
|
e = self.time_embedding(
|
|
sinusoidal_embedding_1d(self.freq_dim, t).to(dtype=x[0].dtype))
|
|
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
|
|
|
|
# context
|
|
context = self.text_embedding(context)
|
|
|
|
context_img_len = None
|
|
if clip_fea is not None:
|
|
if self.img_emb is not None:
|
|
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
|
|
context = torch.concat([context_clip, context], dim=1)
|
|
context_img_len = clip_fea.shape[-2]
|
|
|
|
orig_shape = list(vace_context.shape)
|
|
vace_context = vace_context.movedim(0, 1).reshape([-1] + orig_shape[2:])
|
|
c = self.vace_patch_embedding(vace_context.float()).to(vace_context.dtype)
|
|
c = c.flatten(2).transpose(1, 2)
|
|
c = list(c.split(orig_shape[0], dim=0))
|
|
|
|
# arguments
|
|
x_orig = x
|
|
|
|
patches_replace = transformer_options.get("patches_replace", {})
|
|
blocks_replace = patches_replace.get("dit", {})
|
|
for i, block in enumerate(self.blocks):
|
|
if ("double_block", i) in blocks_replace:
|
|
def block_wrap(args):
|
|
out = {}
|
|
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len)
|
|
return out
|
|
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap})
|
|
x = out["img"]
|
|
else:
|
|
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
|
|
|
|
ii = self.vace_layers_mapping.get(i, None)
|
|
if ii is not None:
|
|
for iii in range(len(c)):
|
|
c_skip, c[iii] = self.vace_blocks[ii](c[iii], x=x_orig, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
|
|
x += c_skip * vace_strength[iii]
|
|
del c_skip
|
|
# head
|
|
x = self.head(x, e)
|
|
|
|
# unpatchify
|
|
x = self.unpatchify(x, grid_sizes)
|
|
return x
|
|
|
|
class CameraWanModel(WanModel):
|
|
r"""
|
|
Wan diffusion backbone supporting both text-to-video and image-to-video.
|
|
"""
|
|
|
|
def __init__(self,
|
|
model_type='camera',
|
|
patch_size=(1, 2, 2),
|
|
text_len=512,
|
|
in_dim=16,
|
|
dim=2048,
|
|
ffn_dim=8192,
|
|
freq_dim=256,
|
|
text_dim=4096,
|
|
out_dim=16,
|
|
num_heads=16,
|
|
num_layers=32,
|
|
window_size=(-1, -1),
|
|
qk_norm=True,
|
|
cross_attn_norm=True,
|
|
eps=1e-6,
|
|
flf_pos_embed_token_number=None,
|
|
image_model=None,
|
|
in_dim_control_adapter=24,
|
|
device=None,
|
|
dtype=None,
|
|
operations=None,
|
|
):
|
|
|
|
if model_type == 'camera':
|
|
model_type = 'i2v'
|
|
else:
|
|
model_type = 't2v'
|
|
|
|
super().__init__(model_type=model_type, patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, flf_pos_embed_token_number=flf_pos_embed_token_number, image_model=image_model, device=device, dtype=dtype, operations=operations)
|
|
operation_settings = {"operations": operations, "device": device, "dtype": dtype}
|
|
|
|
self.control_adapter = WanCamAdapter(in_dim_control_adapter, dim, kernel_size=patch_size[1:], stride=patch_size[1:], operation_settings=operation_settings)
|
|
|
|
|
|
def forward_orig(
|
|
self,
|
|
x,
|
|
t,
|
|
context,
|
|
clip_fea=None,
|
|
freqs=None,
|
|
camera_conditions = None,
|
|
transformer_options={},
|
|
**kwargs,
|
|
):
|
|
# embeddings
|
|
x = self.patch_embedding(x.float()).to(x.dtype)
|
|
if self.control_adapter is not None and camera_conditions is not None:
|
|
x = x + self.control_adapter(camera_conditions).to(x.dtype)
|
|
grid_sizes = x.shape[2:]
|
|
x = x.flatten(2).transpose(1, 2)
|
|
|
|
# time embeddings
|
|
e = self.time_embedding(
|
|
sinusoidal_embedding_1d(self.freq_dim, t).to(dtype=x[0].dtype))
|
|
e0 = self.time_projection(e).unflatten(1, (6, self.dim))
|
|
|
|
# context
|
|
context = self.text_embedding(context)
|
|
|
|
context_img_len = None
|
|
if clip_fea is not None:
|
|
if self.img_emb is not None:
|
|
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
|
|
context = torch.concat([context_clip, context], dim=1)
|
|
context_img_len = clip_fea.shape[-2]
|
|
|
|
patches_replace = transformer_options.get("patches_replace", {})
|
|
blocks_replace = patches_replace.get("dit", {})
|
|
for i, block in enumerate(self.blocks):
|
|
if ("double_block", i) in blocks_replace:
|
|
def block_wrap(args):
|
|
out = {}
|
|
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], context_img_len=context_img_len)
|
|
return out
|
|
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap})
|
|
x = out["img"]
|
|
else:
|
|
x = block(x, e=e0, freqs=freqs, context=context, context_img_len=context_img_len)
|
|
|
|
# head
|
|
x = self.head(x, e)
|
|
|
|
# unpatchify
|
|
x = self.unpatchify(x, grid_sizes)
|
|
return x
|
|
|
|
|
|
class CausalConv1d(nn.Module):
|
|
|
|
def __init__(self,
|
|
chan_in,
|
|
chan_out,
|
|
kernel_size=3,
|
|
stride=1,
|
|
dilation=1,
|
|
pad_mode='replicate',
|
|
operations=None,
|
|
**kwargs):
|
|
super().__init__()
|
|
|
|
self.pad_mode = pad_mode
|
|
padding = (kernel_size - 1, 0) # T
|
|
self.time_causal_padding = padding
|
|
|
|
self.conv = operations.Conv1d(
|
|
chan_in,
|
|
chan_out,
|
|
kernel_size,
|
|
stride=stride,
|
|
dilation=dilation,
|
|
**kwargs)
|
|
|
|
def forward(self, x):
|
|
x = torch.nn.functional.pad(x, self.time_causal_padding, mode=self.pad_mode)
|
|
return self.conv(x)
|
|
|
|
|
|
class MotionEncoder_tc(nn.Module):
|
|
|
|
def __init__(self,
|
|
in_dim: int,
|
|
hidden_dim: int,
|
|
num_heads=int,
|
|
need_global=True,
|
|
dtype=None,
|
|
device=None,
|
|
operations=None,):
|
|
factory_kwargs = {"dtype": dtype, "device": device}
|
|
super().__init__()
|
|
|
|
self.num_heads = num_heads
|
|
self.need_global = need_global
|
|
self.conv1_local = CausalConv1d(in_dim, hidden_dim // 4 * num_heads, 3, stride=1, operations=operations, **factory_kwargs)
|
|
if need_global:
|
|
self.conv1_global = CausalConv1d(
|
|
in_dim, hidden_dim // 4, 3, stride=1, operations=operations, **factory_kwargs)
|
|
self.norm1 = operations.LayerNorm(
|
|
hidden_dim // 4,
|
|
elementwise_affine=False,
|
|
eps=1e-6,
|
|
**factory_kwargs)
|
|
self.act = nn.SiLU()
|
|
self.conv2 = CausalConv1d(hidden_dim // 4, hidden_dim // 2, 3, stride=2, operations=operations, **factory_kwargs)
|
|
self.conv3 = CausalConv1d(hidden_dim // 2, hidden_dim, 3, stride=2, operations=operations, **factory_kwargs)
|
|
|
|
if need_global:
|
|
self.final_linear = operations.Linear(hidden_dim, hidden_dim, **factory_kwargs)
|
|
|
|
self.norm1 = operations.LayerNorm(
|
|
hidden_dim // 4,
|
|
elementwise_affine=False,
|
|
eps=1e-6,
|
|
**factory_kwargs)
|
|
|
|
self.norm2 = operations.LayerNorm(
|
|
hidden_dim // 2,
|
|
elementwise_affine=False,
|
|
eps=1e-6,
|
|
**factory_kwargs)
|
|
|
|
self.norm3 = operations.LayerNorm(
|
|
hidden_dim, elementwise_affine=False, eps=1e-6, **factory_kwargs)
|
|
|
|
self.padding_tokens = nn.Parameter(torch.empty(1, 1, 1, hidden_dim, **factory_kwargs))
|
|
|
|
def forward(self, x):
|
|
x = rearrange(x, 'b t c -> b c t')
|
|
x_ori = x.clone()
|
|
b, c, t = x.shape
|
|
x = self.conv1_local(x)
|
|
x = rearrange(x, 'b (n c) t -> (b n) t c', n=self.num_heads)
|
|
x = self.norm1(x)
|
|
x = self.act(x)
|
|
x = rearrange(x, 'b t c -> b c t')
|
|
x = self.conv2(x)
|
|
x = rearrange(x, 'b c t -> b t c')
|
|
x = self.norm2(x)
|
|
x = self.act(x)
|
|
x = rearrange(x, 'b t c -> b c t')
|
|
x = self.conv3(x)
|
|
x = rearrange(x, 'b c t -> b t c')
|
|
x = self.norm3(x)
|
|
x = self.act(x)
|
|
x = rearrange(x, '(b n) t c -> b t n c', b=b)
|
|
padding = comfy.model_management.cast_to(self.padding_tokens, dtype=x.dtype, device=x.device).repeat(b, x.shape[1], 1, 1)
|
|
x = torch.cat([x, padding], dim=-2)
|
|
x_local = x.clone()
|
|
|
|
if not self.need_global:
|
|
return x_local
|
|
|
|
x = self.conv1_global(x_ori)
|
|
x = rearrange(x, 'b c t -> b t c')
|
|
x = self.norm1(x)
|
|
x = self.act(x)
|
|
x = rearrange(x, 'b t c -> b c t')
|
|
x = self.conv2(x)
|
|
x = rearrange(x, 'b c t -> b t c')
|
|
x = self.norm2(x)
|
|
x = self.act(x)
|
|
x = rearrange(x, 'b t c -> b c t')
|
|
x = self.conv3(x)
|
|
x = rearrange(x, 'b c t -> b t c')
|
|
x = self.norm3(x)
|
|
x = self.act(x)
|
|
x = self.final_linear(x)
|
|
x = rearrange(x, '(b n) t c -> b t n c', b=b)
|
|
|
|
return x, x_local
|
|
|
|
|
|
class CausalAudioEncoder(nn.Module):
|
|
|
|
def __init__(self,
|
|
dim=5120,
|
|
num_layers=25,
|
|
out_dim=2048,
|
|
video_rate=8,
|
|
num_token=4,
|
|
need_global=False,
|
|
dtype=None,
|
|
device=None,
|
|
operations=None):
|
|
super().__init__()
|
|
self.encoder = MotionEncoder_tc(
|
|
in_dim=dim,
|
|
hidden_dim=out_dim,
|
|
num_heads=num_token,
|
|
need_global=need_global, dtype=dtype, device=device, operations=operations)
|
|
weight = torch.empty((1, num_layers, 1, 1), dtype=dtype, device=device)
|
|
|
|
self.weights = torch.nn.Parameter(weight)
|
|
self.act = torch.nn.SiLU()
|
|
|
|
def forward(self, features):
|
|
# features B * num_layers * dim * video_length
|
|
weights = self.act(comfy.model_management.cast_to(self.weights, dtype=features.dtype, device=features.device))
|
|
weights_sum = weights.sum(dim=1, keepdims=True)
|
|
weighted_feat = ((features * weights) / weights_sum).sum(
|
|
dim=1) # b dim f
|
|
weighted_feat = weighted_feat.permute(0, 2, 1) # b f dim
|
|
res = self.encoder(weighted_feat) # b f n dim
|
|
return res # b f n dim
|
|
|
|
|
|
class AdaLayerNorm(nn.Module):
|
|
def __init__(self, embedding_dim, output_dim=None, norm_elementwise_affine=False, norm_eps=1e-5, dtype=None, device=None, operations=None):
|
|
super().__init__()
|
|
|
|
output_dim = output_dim or embedding_dim * 2
|
|
|
|
self.silu = nn.SiLU()
|
|
self.linear = operations.Linear(embedding_dim, output_dim, dtype=dtype, device=device)
|
|
self.norm = operations.LayerNorm(output_dim // 2, norm_eps, norm_elementwise_affine, dtype=dtype, device=device)
|
|
|
|
def forward(self, x, temb):
|
|
temb = self.linear(self.silu(temb))
|
|
shift, scale = temb.chunk(2, dim=1)
|
|
shift = shift[:, None, :]
|
|
scale = scale[:, None, :]
|
|
x = self.norm(x) * (1 + scale) + shift
|
|
return x
|
|
|
|
|
|
class AudioInjector_WAN(nn.Module):
|
|
|
|
def __init__(self,
|
|
dim=2048,
|
|
num_heads=32,
|
|
inject_layer=[0, 27],
|
|
root_net=None,
|
|
enable_adain=False,
|
|
adain_dim=2048,
|
|
adain_mode=None,
|
|
dtype=None,
|
|
device=None,
|
|
operations=None):
|
|
super().__init__()
|
|
self.enable_adain = enable_adain
|
|
self.adain_mode = adain_mode
|
|
self.injected_block_id = {}
|
|
audio_injector_id = 0
|
|
for inject_id in inject_layer:
|
|
self.injected_block_id[inject_id] = audio_injector_id
|
|
audio_injector_id += 1
|
|
|
|
self.injector = nn.ModuleList([
|
|
WanT2VCrossAttention(
|
|
dim=dim,
|
|
num_heads=num_heads,
|
|
qk_norm=True, operation_settings={"operations": operations, "device": device, "dtype": dtype}
|
|
) for _ in range(audio_injector_id)
|
|
])
|
|
self.injector_pre_norm_feat = nn.ModuleList([
|
|
operations.LayerNorm(
|
|
dim,
|
|
elementwise_affine=False,
|
|
eps=1e-6, dtype=dtype, device=device
|
|
) for _ in range(audio_injector_id)
|
|
])
|
|
self.injector_pre_norm_vec = nn.ModuleList([
|
|
operations.LayerNorm(
|
|
dim,
|
|
elementwise_affine=False,
|
|
eps=1e-6, dtype=dtype, device=device
|
|
) for _ in range(audio_injector_id)
|
|
])
|
|
if enable_adain:
|
|
self.injector_adain_layers = nn.ModuleList([
|
|
AdaLayerNorm(
|
|
output_dim=dim * 2, embedding_dim=adain_dim, dtype=dtype, device=device, operations=operations)
|
|
for _ in range(audio_injector_id)
|
|
])
|
|
if adain_mode != "attn_norm":
|
|
self.injector_adain_output_layers = nn.ModuleList(
|
|
[operations.Linear(dim, dim, dtype=dtype, device=device) for _ in range(audio_injector_id)])
|
|
|
|
def forward(self, x, block_id, audio_emb, audio_emb_global, seq_len):
|
|
audio_attn_id = self.injected_block_id.get(block_id, None)
|
|
if audio_attn_id is None:
|
|
return x
|
|
|
|
num_frames = audio_emb.shape[1]
|
|
input_hidden_states = rearrange(x[:, :seq_len], "b (t n) c -> (b t) n c", t=num_frames)
|
|
if self.enable_adain and self.adain_mode == "attn_norm":
|
|
audio_emb_global = rearrange(audio_emb_global, "b t n c -> (b t) n c")
|
|
adain_hidden_states = self.injector_adain_layers[audio_attn_id](input_hidden_states, temb=audio_emb_global[:, 0])
|
|
attn_hidden_states = adain_hidden_states
|
|
else:
|
|
attn_hidden_states = self.injector_pre_norm_feat[audio_attn_id](input_hidden_states)
|
|
audio_emb = rearrange(audio_emb, "b t n c -> (b t) n c", t=num_frames)
|
|
attn_audio_emb = audio_emb
|
|
residual_out = self.injector[audio_attn_id](x=attn_hidden_states, context=attn_audio_emb)
|
|
residual_out = rearrange(
|
|
residual_out, "(b t) n c -> b (t n) c", t=num_frames)
|
|
x[:, :seq_len] = x[:, :seq_len] + residual_out
|
|
return x
|
|
|
|
|
|
class FramePackMotioner(nn.Module):
|
|
def __init__(
|
|
self,
|
|
inner_dim=1024,
|
|
num_heads=16, # Used to indicate the number of heads in the backbone network; unrelated to this module's design
|
|
zip_frame_buckets=[
|
|
1, 2, 16
|
|
], # Three numbers representing the number of frames sampled for patch operations from the nearest to the farthest frames
|
|
drop_mode="drop", # If not "drop", it will use "padd", meaning padding instead of deletion
|
|
dtype=None,
|
|
device=None,
|
|
operations=None):
|
|
super().__init__()
|
|
self.proj = operations.Conv3d(16, inner_dim, kernel_size=(1, 2, 2), stride=(1, 2, 2), dtype=dtype, device=device)
|
|
self.proj_2x = operations.Conv3d(16, inner_dim, kernel_size=(2, 4, 4), stride=(2, 4, 4), dtype=dtype, device=device)
|
|
self.proj_4x = operations.Conv3d(16, inner_dim, kernel_size=(4, 8, 8), stride=(4, 8, 8), dtype=dtype, device=device)
|
|
self.zip_frame_buckets = zip_frame_buckets
|
|
|
|
self.inner_dim = inner_dim
|
|
self.num_heads = num_heads
|
|
|
|
self.drop_mode = drop_mode
|
|
|
|
def forward(self, motion_latents, rope_embedder, add_last_motion=2):
|
|
lat_height, lat_width = motion_latents.shape[3], motion_latents.shape[4]
|
|
padd_lat = torch.zeros(motion_latents.shape[0], 16, sum(self.zip_frame_buckets), lat_height, lat_width).to(device=motion_latents.device, dtype=motion_latents.dtype)
|
|
overlap_frame = min(padd_lat.shape[2], motion_latents.shape[2])
|
|
if overlap_frame > 0:
|
|
padd_lat[:, :, -overlap_frame:] = motion_latents[:, :, -overlap_frame:]
|
|
|
|
if add_last_motion < 2 and self.drop_mode != "drop":
|
|
zero_end_frame = sum(self.zip_frame_buckets[:len(self.zip_frame_buckets) - add_last_motion - 1])
|
|
padd_lat[:, :, -zero_end_frame:] = 0
|
|
|
|
clean_latents_4x, clean_latents_2x, clean_latents_post = padd_lat[:, :, -sum(self.zip_frame_buckets):, :, :].split(self.zip_frame_buckets[::-1], dim=2) # 16, 2 ,1
|
|
|
|
# patchfy
|
|
clean_latents_post = self.proj(clean_latents_post).flatten(2).transpose(1, 2)
|
|
clean_latents_2x = self.proj_2x(clean_latents_2x)
|
|
l_2x_shape = clean_latents_2x.shape
|
|
clean_latents_2x = clean_latents_2x.flatten(2).transpose(1, 2)
|
|
clean_latents_4x = self.proj_4x(clean_latents_4x)
|
|
l_4x_shape = clean_latents_4x.shape
|
|
clean_latents_4x = clean_latents_4x.flatten(2).transpose(1, 2)
|
|
|
|
if add_last_motion < 2 and self.drop_mode == "drop":
|
|
clean_latents_post = clean_latents_post[:, :
|
|
0] if add_last_motion < 2 else clean_latents_post
|
|
clean_latents_2x = clean_latents_2x[:, :
|
|
0] if add_last_motion < 1 else clean_latents_2x
|
|
|
|
motion_lat = torch.cat([clean_latents_post, clean_latents_2x, clean_latents_4x], dim=1)
|
|
|
|
rope_post = rope_embedder.rope_encode(1, lat_height, lat_width, t_start=-1, device=motion_latents.device, dtype=motion_latents.dtype)
|
|
rope_2x = rope_embedder.rope_encode(1, lat_height, lat_width, t_start=-3, steps_h=l_2x_shape[-2], steps_w=l_2x_shape[-1], device=motion_latents.device, dtype=motion_latents.dtype)
|
|
rope_4x = rope_embedder.rope_encode(4, lat_height, lat_width, t_start=-19, steps_h=l_4x_shape[-2], steps_w=l_4x_shape[-1], device=motion_latents.device, dtype=motion_latents.dtype)
|
|
|
|
rope = torch.cat([rope_post, rope_2x, rope_4x], dim=1)
|
|
return motion_lat, rope
|
|
|
|
|
|
class WanModel_S2V(WanModel):
|
|
def __init__(self,
|
|
model_type='s2v',
|
|
patch_size=(1, 2, 2),
|
|
text_len=512,
|
|
in_dim=16,
|
|
dim=2048,
|
|
ffn_dim=8192,
|
|
freq_dim=256,
|
|
text_dim=4096,
|
|
out_dim=16,
|
|
num_heads=16,
|
|
num_layers=32,
|
|
window_size=(-1, -1),
|
|
qk_norm=True,
|
|
cross_attn_norm=True,
|
|
eps=1e-6,
|
|
audio_dim=1024,
|
|
num_audio_token=4,
|
|
enable_adain=True,
|
|
cond_dim=16,
|
|
audio_inject_layers=[0, 4, 8, 12, 16, 20, 24, 27, 30, 33, 36, 39],
|
|
adain_mode="attn_norm",
|
|
framepack_drop_mode="padd",
|
|
image_model=None,
|
|
device=None,
|
|
dtype=None,
|
|
operations=None,
|
|
):
|
|
|
|
super().__init__(model_type='t2v', patch_size=patch_size, text_len=text_len, in_dim=in_dim, dim=dim, ffn_dim=ffn_dim, freq_dim=freq_dim, text_dim=text_dim, out_dim=out_dim, num_heads=num_heads, num_layers=num_layers, window_size=window_size, qk_norm=qk_norm, cross_attn_norm=cross_attn_norm, eps=eps, image_model=image_model, device=device, dtype=dtype, operations=operations)
|
|
|
|
self.trainable_cond_mask = operations.Embedding(3, self.dim, device=device, dtype=dtype)
|
|
|
|
self.casual_audio_encoder = CausalAudioEncoder(
|
|
dim=audio_dim,
|
|
out_dim=self.dim,
|
|
num_token=num_audio_token,
|
|
need_global=enable_adain, dtype=dtype, device=device, operations=operations)
|
|
|
|
if cond_dim > 0:
|
|
self.cond_encoder = operations.Conv3d(
|
|
cond_dim,
|
|
self.dim,
|
|
kernel_size=self.patch_size,
|
|
stride=self.patch_size, device=device, dtype=dtype)
|
|
|
|
self.audio_injector = AudioInjector_WAN(
|
|
dim=self.dim,
|
|
num_heads=self.num_heads,
|
|
inject_layer=audio_inject_layers,
|
|
root_net=self,
|
|
enable_adain=enable_adain,
|
|
adain_dim=self.dim,
|
|
adain_mode=adain_mode,
|
|
dtype=dtype, device=device, operations=operations
|
|
)
|
|
|
|
self.frame_packer = FramePackMotioner(
|
|
inner_dim=self.dim,
|
|
num_heads=self.num_heads,
|
|
zip_frame_buckets=[1, 2, 16],
|
|
drop_mode=framepack_drop_mode,
|
|
dtype=dtype, device=device, operations=operations)
|
|
|
|
def forward_orig(
|
|
self,
|
|
x,
|
|
t,
|
|
context,
|
|
audio_embed=None,
|
|
reference_latent=None,
|
|
control_video=None,
|
|
reference_motion=None,
|
|
clip_fea=None,
|
|
freqs=None,
|
|
transformer_options={},
|
|
**kwargs,
|
|
):
|
|
if audio_embed is not None:
|
|
num_embeds = x.shape[-3] * 4
|
|
audio_emb_global, audio_emb = self.casual_audio_encoder(audio_embed[:, :, :, :num_embeds])
|
|
else:
|
|
audio_emb = None
|
|
|
|
# embeddings
|
|
x = self.patch_embedding(x.float()).to(x.dtype)
|
|
if control_video is not None:
|
|
x = x + self.cond_encoder(control_video)
|
|
|
|
if t.ndim == 1:
|
|
t = t.unsqueeze(1).repeat(1, x.shape[2])
|
|
|
|
grid_sizes = x.shape[2:]
|
|
x = x.flatten(2).transpose(1, 2)
|
|
seq_len = x.size(1)
|
|
|
|
cond_mask_weight = comfy.model_management.cast_to(self.trainable_cond_mask.weight, dtype=x.dtype, device=x.device).unsqueeze(1).unsqueeze(1)
|
|
x = x + cond_mask_weight[0]
|
|
|
|
if reference_latent is not None:
|
|
ref = self.patch_embedding(reference_latent.float()).to(x.dtype)
|
|
ref = ref.flatten(2).transpose(1, 2)
|
|
freqs_ref = self.rope_encode(reference_latent.shape[-3], reference_latent.shape[-2], reference_latent.shape[-1], t_start=30, device=x.device, dtype=x.dtype)
|
|
ref = ref + cond_mask_weight[1]
|
|
x = torch.cat([x, ref], dim=1)
|
|
freqs = torch.cat([freqs, freqs_ref], dim=1)
|
|
t = torch.cat([t, torch.zeros((t.shape[0], reference_latent.shape[-3]), device=t.device, dtype=t.dtype)], dim=1)
|
|
|
|
if reference_motion is not None:
|
|
motion_encoded, freqs_motion = self.frame_packer(reference_motion, self)
|
|
motion_encoded = motion_encoded + cond_mask_weight[2]
|
|
x = torch.cat([x, motion_encoded], dim=1)
|
|
freqs = torch.cat([freqs, freqs_motion], dim=1)
|
|
|
|
t = torch.repeat_interleave(t, 2, dim=1)
|
|
t = torch.cat([t, torch.zeros((t.shape[0], 3), device=t.device, dtype=t.dtype)], dim=1)
|
|
|
|
# time embeddings
|
|
e = self.time_embedding(
|
|
sinusoidal_embedding_1d(self.freq_dim, t.flatten()).to(dtype=x[0].dtype))
|
|
e = e.reshape(t.shape[0], -1, e.shape[-1])
|
|
e0 = self.time_projection(e).unflatten(2, (6, self.dim))
|
|
|
|
# context
|
|
context = self.text_embedding(context)
|
|
|
|
|
|
patches_replace = transformer_options.get("patches_replace", {})
|
|
blocks_replace = patches_replace.get("dit", {})
|
|
for i, block in enumerate(self.blocks):
|
|
if ("double_block", i) in blocks_replace:
|
|
def block_wrap(args):
|
|
out = {}
|
|
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"])
|
|
return out
|
|
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap})
|
|
x = out["img"]
|
|
else:
|
|
x = block(x, e=e0, freqs=freqs, context=context)
|
|
if audio_emb is not None:
|
|
x = self.audio_injector(x, i, audio_emb, audio_emb_global, seq_len)
|
|
# head
|
|
x = self.head(x, e)
|
|
|
|
# unpatchify
|
|
x = self.unpatchify(x, grid_sizes)
|
|
return x
|