ComfyUI/comfy_extras/v3/nodes_mask.py
2025-07-16 21:12:40 +03:00

435 lines
15 KiB
Python

from __future__ import annotations
import numpy as np
import scipy.ndimage
import torch
import comfy.utils
import node_helpers
import nodes
from comfy_api.v3 import io, ui
def composite(destination, source, x, y, mask=None, multiplier=8, resize_source=False):
source = source.to(destination.device)
if resize_source:
source = torch.nn.functional.interpolate(
source, size=(destination.shape[2], destination.shape[3]), mode="bilinear"
)
source = comfy.utils.repeat_to_batch_size(source, destination.shape[0])
x = max(-source.shape[3] * multiplier, min(x, destination.shape[3] * multiplier))
y = max(-source.shape[2] * multiplier, min(y, destination.shape[2] * multiplier))
left, top = (x // multiplier, y // multiplier)
right, bottom = (
left + source.shape[3],
top + source.shape[2],
)
if mask is None:
mask = torch.ones_like(source)
else:
mask = mask.to(destination.device, copy=True)
mask = torch.nn.functional.interpolate(
mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])),
size=(source.shape[2], source.shape[3]),
mode="bilinear",
)
mask = comfy.utils.repeat_to_batch_size(mask, source.shape[0])
# calculate the bounds of the source that will be overlapping the destination
# this prevents the source trying to overwrite latent pixels that are out of bounds
# of the destination
visible_width, visible_height = (
destination.shape[3] - left + min(0, x),
destination.shape[2] - top + min(0, y),
)
mask = mask[:, :, :visible_height, :visible_width]
inverse_mask = torch.ones_like(mask) - mask
source_portion = mask * source[:, :, :visible_height, :visible_width]
destination_portion = inverse_mask * destination[:, :, top:bottom, left:right]
destination[:, :, top:bottom, left:right] = source_portion + destination_portion
return destination
class CropMask(io.ComfyNodeV3):
@classmethod
def define_schema(cls):
return io.SchemaV3(
node_id="CropMask_V3",
display_name="Crop Mask _V3",
category="mask",
inputs=[
io.Mask.Input("mask"),
io.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION),
io.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION),
io.Int.Input("width", default=512, min=1, max=nodes.MAX_RESOLUTION),
io.Int.Input("height", default=512, min=1, max=nodes.MAX_RESOLUTION),
],
outputs=[io.Mask.Output()],
)
@classmethod
def execute(cls, mask, x, y, width, height) -> io.NodeOutput:
mask = mask.reshape((-1, mask.shape[-2], mask.shape[-1]))
return io.NodeOutput(mask[:, y : y + height, x : x + width])
class FeatherMask(io.ComfyNodeV3):
@classmethod
def define_schema(cls):
return io.SchemaV3(
node_id="FeatherMask_V3",
display_name="Feather Mask _V3",
category="mask",
inputs=[
io.Mask.Input("mask"),
io.Int.Input("left", default=0, min=0, max=nodes.MAX_RESOLUTION),
io.Int.Input("top", default=0, min=0, max=nodes.MAX_RESOLUTION),
io.Int.Input("right", default=0, min=0, max=nodes.MAX_RESOLUTION),
io.Int.Input("bottom", default=0, min=0, max=nodes.MAX_RESOLUTION),
],
outputs=[io.Mask.Output()],
)
@classmethod
def execute(cls, mask, left, top, right, bottom) -> io.NodeOutput:
output = mask.reshape((-1, mask.shape[-2], mask.shape[-1])).clone()
left = min(left, output.shape[-1])
right = min(right, output.shape[-1])
top = min(top, output.shape[-2])
bottom = min(bottom, output.shape[-2])
for x in range(left):
feather_rate = (x + 1.0) / left
output[:, :, x] *= feather_rate
for x in range(right):
feather_rate = (x + 1) / right
output[:, :, -x] *= feather_rate
for y in range(top):
feather_rate = (y + 1) / top
output[:, y, :] *= feather_rate
for y in range(bottom):
feather_rate = (y + 1) / bottom
output[:, -y, :] *= feather_rate
return io.NodeOutput(output)
class GrowMask(io.ComfyNodeV3):
@classmethod
def define_schema(cls):
return io.SchemaV3(
node_id="GrowMask_V3",
display_name="Grow Mask _V3",
category="mask",
inputs=[
io.Mask.Input("mask"),
io.Int.Input("expand", default=0, min=-nodes.MAX_RESOLUTION, max=nodes.MAX_RESOLUTION),
io.Boolean.Input("tapered_corners", default=True),
],
outputs=[io.Mask.Output()],
)
@classmethod
def execute(cls, mask, expand, tapered_corners) -> io.NodeOutput:
c = 0 if tapered_corners else 1
kernel = np.array([[c, 1, c], [1, 1, 1], [c, 1, c]])
mask = mask.reshape((-1, mask.shape[-2], mask.shape[-1]))
out = []
for m in mask:
output = m.numpy()
for _ in range(abs(expand)):
if expand < 0:
output = scipy.ndimage.grey_erosion(output, footprint=kernel)
else:
output = scipy.ndimage.grey_dilation(output, footprint=kernel)
output = torch.from_numpy(output)
out.append(output)
return io.NodeOutput(torch.stack(out, dim=0))
class ImageColorToMask(io.ComfyNodeV3):
@classmethod
def define_schema(cls):
return io.SchemaV3(
node_id="ImageColorToMask_V3",
display_name="Image Color to Mask _V3",
category="mask",
inputs=[
io.Image.Input("image"),
io.Int.Input("color", default=0, min=0, max=0xFFFFFF, display_mode=io.NumberDisplay.color),
],
outputs=[io.Mask.Output()],
)
@classmethod
def execute(cls, image, color) -> io.NodeOutput:
temp = (torch.clamp(image, 0, 1.0) * 255.0).round().to(torch.int)
temp = (
torch.bitwise_left_shift(temp[:, :, :, 0], 16)
+ torch.bitwise_left_shift(temp[:, :, :, 1], 8)
+ temp[:, :, :, 2]
)
return io.NodeOutput(torch.where(temp == color, 1.0, 0).float())
class ImageCompositeMasked(io.ComfyNodeV3):
@classmethod
def define_schema(cls):
return io.SchemaV3(
node_id="ImageCompositeMasked_V3",
display_name="Image Composite Masked _V3",
category="image",
inputs=[
io.Image.Input("destination"),
io.Image.Input("source"),
io.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION),
io.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION),
io.Boolean.Input("resize_source", default=False),
io.Mask.Input("mask", optional=True),
],
outputs=[io.Image.Output()],
)
@classmethod
def execute(cls, destination, source, x, y, resize_source, mask=None) -> io.NodeOutput:
destination, source = node_helpers.image_alpha_fix(destination, source)
destination = destination.clone().movedim(-1, 1)
output = composite(destination, source.movedim(-1, 1), x, y, mask, 1, resize_source).movedim(1, -1)
return io.NodeOutput(output)
class ImageToMask(io.ComfyNodeV3):
CHANNELS = ["red", "green", "blue", "alpha"]
@classmethod
def define_schema(cls):
return io.SchemaV3(
node_id="ImageToMask_V3",
display_name="Convert Image to Mask _V3",
category="mask",
inputs=[
io.Image.Input("image"),
io.Combo.Input("channel", options=cls.CHANNELS),
],
outputs=[io.Mask.Output()],
)
@classmethod
def execute(cls, image, channel) -> io.NodeOutput:
return io.NodeOutput(image[:, :, :, cls.CHANNELS.index(channel)])
class InvertMask(io.ComfyNodeV3):
@classmethod
def define_schema(cls):
return io.SchemaV3(
node_id="InvertMask_V3",
display_name="Invert Mask _V3",
category="mask",
inputs=[
io.Mask.Input("mask"),
],
outputs=[io.Mask.Output()],
)
@classmethod
def execute(cls, mask) -> io.NodeOutput:
return io.NodeOutput(1.0 - mask)
class LatentCompositeMasked(io.ComfyNodeV3):
@classmethod
def define_schema(cls):
return io.SchemaV3(
node_id="LatentCompositeMasked_V3",
display_name="Latent Composite Masked _V3",
category="latent",
inputs=[
io.Latent.Input("destination"),
io.Latent.Input("source"),
io.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION, step=8),
io.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION, step=8),
io.Boolean.Input("resize_source", default=False),
io.Mask.Input("mask", optional=True),
],
outputs=[io.Latent.Output()],
)
@classmethod
def execute(cls, destination, source, x, y, resize_source, mask=None) -> io.NodeOutput:
output = destination.copy()
destination_samples = destination["samples"].clone()
source_samples = source["samples"]
output["samples"] = composite(destination_samples, source_samples, x, y, mask, 8, resize_source)
return io.NodeOutput(output)
class MaskComposite(io.ComfyNodeV3):
@classmethod
def define_schema(cls):
return io.SchemaV3(
node_id="MaskComposite_V3",
display_name="Mask Composite _V3",
category="mask",
inputs=[
io.Mask.Input("destination"),
io.Mask.Input("source"),
io.Int.Input("x", default=0, min=0, max=nodes.MAX_RESOLUTION),
io.Int.Input("y", default=0, min=0, max=nodes.MAX_RESOLUTION),
io.Combo.Input("operation", options=["multiply", "add", "subtract", "and", "or", "xor"]),
],
outputs=[io.Mask.Output()],
)
@classmethod
def execute(cls, destination, source, x, y, operation) -> io.NodeOutput:
output = destination.reshape((-1, destination.shape[-2], destination.shape[-1])).clone()
source = source.reshape((-1, source.shape[-2], source.shape[-1]))
left, top = (
x,
y,
)
right, bottom = (
min(left + source.shape[-1], destination.shape[-1]),
min(top + source.shape[-2], destination.shape[-2]),
)
visible_width, visible_height = (
right - left,
bottom - top,
)
source_portion = source[:, :visible_height, :visible_width]
destination_portion = output[:, top:bottom, left:right]
if operation == "multiply":
output[:, top:bottom, left:right] = destination_portion * source_portion
elif operation == "add":
output[:, top:bottom, left:right] = destination_portion + source_portion
elif operation == "subtract":
output[:, top:bottom, left:right] = destination_portion - source_portion
elif operation == "and":
output[:, top:bottom, left:right] = torch.bitwise_and(
destination_portion.round().bool(), source_portion.round().bool()
).float()
elif operation == "or":
output[:, top:bottom, left:right] = torch.bitwise_or(
destination_portion.round().bool(), source_portion.round().bool()
).float()
elif operation == "xor":
output[:, top:bottom, left:right] = torch.bitwise_xor(
destination_portion.round().bool(), source_portion.round().bool()
).float()
return io.NodeOutput(torch.clamp(output, 0.0, 1.0))
class MaskPreview(io.ComfyNodeV3):
"""Mask Preview - original implement in ComfyUI_essentials.
https://github.com/cubiq/ComfyUI_essentials/blob/9d9f4bedfc9f0321c19faf71855e228c93bd0dc9/mask.py#L81
Upstream requested in https://github.com/Kosinkadink/rfcs/blob/main/rfcs/0000-corenodes.md#preview-nodes
"""
@classmethod
def define_schema(cls):
return io.SchemaV3(
node_id="MaskPreview_V3",
display_name="Preview Mask _V3",
category="mask",
inputs=[
io.Mask.Input("masks"),
],
hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo],
is_output_node=True,
)
@classmethod
def execute(cls, masks):
return io.NodeOutput(ui=ui.PreviewMask(masks))
class MaskToImage(io.ComfyNodeV3):
@classmethod
def define_schema(cls):
return io.SchemaV3(
node_id="MaskToImage_V3",
display_name="Convert Mask to Image _V3",
category="mask",
inputs=[
io.Mask.Input("mask"),
],
outputs=[io.Image.Output()],
)
@classmethod
def execute(cls, mask) -> io.NodeOutput:
return io.NodeOutput(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3))
class SolidMask(io.ComfyNodeV3):
@classmethod
def define_schema(cls):
return io.SchemaV3(
node_id="SolidMask_V3",
display_name="Solid Mask _V3",
category="mask",
inputs=[
io.Float.Input("value", default=1.0, min=0.0, max=1.0, step=0.01),
io.Int.Input("width", default=512, min=1, max=nodes.MAX_RESOLUTION),
io.Int.Input("height", default=512, min=1, max=nodes.MAX_RESOLUTION),
],
outputs=[io.Mask.Output()],
)
@classmethod
def execute(cls, value, width, height) -> io.NodeOutput:
return io.NodeOutput(torch.full((1, height, width), value, dtype=torch.float32, device="cpu"))
class ThresholdMask(io.ComfyNodeV3):
@classmethod
def define_schema(cls):
return io.SchemaV3(
node_id="ThresholdMask_V3",
display_name="Threshold Mask _V3",
category="mask",
inputs=[
io.Mask.Input("mask"),
io.Float.Input("value", default=0.5, min=0.0, max=1.0, step=0.01),
],
outputs=[io.Mask.Output()],
)
@classmethod
def execute(cls, mask, value) -> io.NodeOutput:
return io.NodeOutput((mask > value).float())
NODES_LIST: list[type[io.ComfyNodeV3]] = [
CropMask,
FeatherMask,
GrowMask,
ImageColorToMask,
ImageCompositeMasked,
ImageToMask,
InvertMask,
LatentCompositeMasked,
MaskComposite,
MaskPreview,
MaskToImage,
SolidMask,
ThresholdMask,
]