mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-08-13 00:26:45 +00:00
* converted API nodes to async * converted BFL API nodes to async * fixed client bug; converted gemini, ideogram, minimax * fixed client bug; converted openai nodes * fixed client bug; converted moonvalley, pika nodes * fixed client bug; converted kling, luma nodes * converted pixverse, rodin nodes * converted tripo, veo2 * converted recraft nodes * add lost log_request_response call
627 lines
21 KiB
Python
627 lines
21 KiB
Python
from __future__ import annotations
|
||
import aiohttp
|
||
import io
|
||
import logging
|
||
import mimetypes
|
||
from typing import Optional, Union
|
||
from comfy.utils import common_upscale
|
||
from comfy_api.input_impl import VideoFromFile
|
||
from comfy_api.util import VideoContainer, VideoCodec
|
||
from comfy_api.input.video_types import VideoInput
|
||
from comfy_api.input.basic_types import AudioInput
|
||
from comfy_api_nodes.apis.client import (
|
||
ApiClient,
|
||
ApiEndpoint,
|
||
HttpMethod,
|
||
SynchronousOperation,
|
||
UploadRequest,
|
||
UploadResponse,
|
||
)
|
||
from server import PromptServer
|
||
|
||
|
||
import numpy as np
|
||
from PIL import Image
|
||
import torch
|
||
import math
|
||
import base64
|
||
import uuid
|
||
from io import BytesIO
|
||
import av
|
||
|
||
|
||
async def download_url_to_video_output(video_url: str, timeout: int = None) -> VideoFromFile:
|
||
"""Downloads a video from a URL and returns a `VIDEO` output.
|
||
|
||
Args:
|
||
video_url: The URL of the video to download.
|
||
|
||
Returns:
|
||
A Comfy node `VIDEO` output.
|
||
"""
|
||
video_io = await download_url_to_bytesio(video_url, timeout)
|
||
if video_io is None:
|
||
error_msg = f"Failed to download video from {video_url}"
|
||
logging.error(error_msg)
|
||
raise ValueError(error_msg)
|
||
return VideoFromFile(video_io)
|
||
|
||
|
||
def downscale_image_tensor(image, total_pixels=1536 * 1024) -> torch.Tensor:
|
||
"""Downscale input image tensor to roughly the specified total pixels."""
|
||
samples = image.movedim(-1, 1)
|
||
total = int(total_pixels)
|
||
scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2]))
|
||
if scale_by >= 1:
|
||
return image
|
||
width = round(samples.shape[3] * scale_by)
|
||
height = round(samples.shape[2] * scale_by)
|
||
|
||
s = common_upscale(samples, width, height, "lanczos", "disabled")
|
||
s = s.movedim(1, -1)
|
||
return s
|
||
|
||
|
||
async def validate_and_cast_response(
|
||
response, timeout: int = None, node_id: Union[str, None] = None
|
||
) -> torch.Tensor:
|
||
"""Validates and casts a response to a torch.Tensor.
|
||
|
||
Args:
|
||
response: The response to validate and cast.
|
||
timeout: Request timeout in seconds. Defaults to None (no timeout).
|
||
|
||
Returns:
|
||
A torch.Tensor representing the image (1, H, W, C).
|
||
|
||
Raises:
|
||
ValueError: If the response is not valid.
|
||
"""
|
||
# validate raw JSON response
|
||
data = response.data
|
||
if not data or len(data) == 0:
|
||
raise ValueError("No images returned from API endpoint")
|
||
|
||
# Initialize list to store image tensors
|
||
image_tensors: list[torch.Tensor] = []
|
||
|
||
# Process each image in the data array
|
||
async with aiohttp.ClientSession(timeout=aiohttp.ClientTimeout(total=timeout)) as session:
|
||
for img_data in data:
|
||
img_bytes: bytes
|
||
if img_data.b64_json:
|
||
img_bytes = base64.b64decode(img_data.b64_json)
|
||
elif img_data.url:
|
||
if node_id:
|
||
PromptServer.instance.send_progress_text(f"Result URL: {img_data.url}", node_id)
|
||
async with session.get(img_data.url) as resp:
|
||
if resp.status != 200:
|
||
raise ValueError("Failed to download generated image")
|
||
img_bytes = await resp.read()
|
||
else:
|
||
raise ValueError("Invalid image payload – neither URL nor base64 data present.")
|
||
|
||
pil_img = Image.open(BytesIO(img_bytes)).convert("RGBA")
|
||
arr = np.asarray(pil_img).astype(np.float32) / 255.0
|
||
image_tensors.append(torch.from_numpy(arr))
|
||
|
||
return torch.stack(image_tensors, dim=0)
|
||
|
||
|
||
def validate_aspect_ratio(
|
||
aspect_ratio: str,
|
||
minimum_ratio: float,
|
||
maximum_ratio: float,
|
||
minimum_ratio_str: str,
|
||
maximum_ratio_str: str,
|
||
) -> float:
|
||
"""Validates and casts an aspect ratio string to a float.
|
||
|
||
Args:
|
||
aspect_ratio: The aspect ratio string to validate.
|
||
minimum_ratio: The minimum aspect ratio.
|
||
maximum_ratio: The maximum aspect ratio.
|
||
minimum_ratio_str: The minimum aspect ratio string.
|
||
maximum_ratio_str: The maximum aspect ratio string.
|
||
|
||
Returns:
|
||
The validated and cast aspect ratio.
|
||
|
||
Raises:
|
||
Exception: If the aspect ratio is not valid.
|
||
"""
|
||
# get ratio values
|
||
numbers = aspect_ratio.split(":")
|
||
if len(numbers) != 2:
|
||
raise TypeError(
|
||
f"Aspect ratio must be in the format X:Y, such as 16:9, but was {aspect_ratio}."
|
||
)
|
||
try:
|
||
numerator = int(numbers[0])
|
||
denominator = int(numbers[1])
|
||
except ValueError as exc:
|
||
raise TypeError(
|
||
f"Aspect ratio must contain numbers separated by ':', such as 16:9, but was {aspect_ratio}."
|
||
) from exc
|
||
calculated_ratio = numerator / denominator
|
||
# if not close to minimum and maximum, check bounds
|
||
if not math.isclose(calculated_ratio, minimum_ratio) or not math.isclose(
|
||
calculated_ratio, maximum_ratio
|
||
):
|
||
if calculated_ratio < minimum_ratio:
|
||
raise TypeError(
|
||
f"Aspect ratio cannot reduce to any less than {minimum_ratio_str} ({minimum_ratio}), but was {aspect_ratio} ({calculated_ratio})."
|
||
)
|
||
elif calculated_ratio > maximum_ratio:
|
||
raise TypeError(
|
||
f"Aspect ratio cannot reduce to any greater than {maximum_ratio_str} ({maximum_ratio}), but was {aspect_ratio} ({calculated_ratio})."
|
||
)
|
||
return aspect_ratio
|
||
|
||
|
||
def mimetype_to_extension(mime_type: str) -> str:
|
||
"""Converts a MIME type to a file extension."""
|
||
return mime_type.split("/")[-1].lower()
|
||
|
||
|
||
async def download_url_to_bytesio(url: str, timeout: int = None) -> BytesIO:
|
||
"""Downloads content from a URL using requests and returns it as BytesIO.
|
||
|
||
Args:
|
||
url: The URL to download.
|
||
timeout: Request timeout in seconds. Defaults to None (no timeout).
|
||
|
||
Returns:
|
||
BytesIO object containing the downloaded content.
|
||
"""
|
||
timeout_cfg = aiohttp.ClientTimeout(total=timeout) if timeout else None
|
||
async with aiohttp.ClientSession(timeout=timeout_cfg) as session:
|
||
async with session.get(url) as resp:
|
||
resp.raise_for_status() # Raises HTTPError for bad responses (4XX or 5XX)
|
||
return BytesIO(await resp.read())
|
||
|
||
|
||
def bytesio_to_image_tensor(image_bytesio: BytesIO, mode: str = "RGBA") -> torch.Tensor:
|
||
"""Converts image data from BytesIO to a torch.Tensor.
|
||
|
||
Args:
|
||
image_bytesio: BytesIO object containing the image data.
|
||
mode: The PIL mode to convert the image to (e.g., "RGB", "RGBA").
|
||
|
||
Returns:
|
||
A torch.Tensor representing the image (1, H, W, C).
|
||
|
||
Raises:
|
||
PIL.UnidentifiedImageError: If the image data cannot be identified.
|
||
ValueError: If the specified mode is invalid.
|
||
"""
|
||
image = Image.open(image_bytesio)
|
||
image = image.convert(mode)
|
||
image_array = np.array(image).astype(np.float32) / 255.0
|
||
return torch.from_numpy(image_array).unsqueeze(0)
|
||
|
||
|
||
async def download_url_to_image_tensor(url: str, timeout: int = None) -> torch.Tensor:
|
||
"""Downloads an image from a URL and returns a [B, H, W, C] tensor."""
|
||
image_bytesio = await download_url_to_bytesio(url, timeout)
|
||
return bytesio_to_image_tensor(image_bytesio)
|
||
|
||
|
||
def process_image_response(response_content: bytes | str) -> torch.Tensor:
|
||
"""Uses content from a Response object and converts it to a torch.Tensor"""
|
||
return bytesio_to_image_tensor(BytesIO(response_content))
|
||
|
||
|
||
def _tensor_to_pil(image: torch.Tensor, total_pixels: int = 2048 * 2048) -> Image.Image:
|
||
"""Converts a single torch.Tensor image [H, W, C] to a PIL Image, optionally downscaling."""
|
||
if len(image.shape) > 3:
|
||
image = image[0]
|
||
# TODO: remove alpha if not allowed and present
|
||
input_tensor = image.cpu()
|
||
input_tensor = downscale_image_tensor(
|
||
input_tensor.unsqueeze(0), total_pixels=total_pixels
|
||
).squeeze()
|
||
image_np = (input_tensor.numpy() * 255).astype(np.uint8)
|
||
img = Image.fromarray(image_np)
|
||
return img
|
||
|
||
|
||
def _pil_to_bytesio(img: Image.Image, mime_type: str = "image/png") -> BytesIO:
|
||
"""Converts a PIL Image to a BytesIO object."""
|
||
if not mime_type:
|
||
mime_type = "image/png"
|
||
|
||
img_byte_arr = io.BytesIO()
|
||
# Derive PIL format from MIME type (e.g., 'image/png' -> 'PNG')
|
||
pil_format = mime_type.split("/")[-1].upper()
|
||
if pil_format == "JPG":
|
||
pil_format = "JPEG"
|
||
img.save(img_byte_arr, format=pil_format)
|
||
img_byte_arr.seek(0)
|
||
return img_byte_arr
|
||
|
||
|
||
def tensor_to_bytesio(
|
||
image: torch.Tensor,
|
||
name: Optional[str] = None,
|
||
total_pixels: int = 2048 * 2048,
|
||
mime_type: str = "image/png",
|
||
) -> BytesIO:
|
||
"""Converts a torch.Tensor image to a named BytesIO object.
|
||
|
||
Args:
|
||
image: Input torch.Tensor image.
|
||
name: Optional filename for the BytesIO object.
|
||
total_pixels: Maximum total pixels for potential downscaling.
|
||
mime_type: Target image MIME type (e.g., 'image/png', 'image/jpeg', 'image/webp', 'video/mp4').
|
||
|
||
Returns:
|
||
Named BytesIO object containing the image data.
|
||
"""
|
||
if not mime_type:
|
||
mime_type = "image/png"
|
||
|
||
pil_image = _tensor_to_pil(image, total_pixels=total_pixels)
|
||
img_binary = _pil_to_bytesio(pil_image, mime_type=mime_type)
|
||
img_binary.name = (
|
||
f"{name if name else uuid.uuid4()}.{mimetype_to_extension(mime_type)}"
|
||
)
|
||
return img_binary
|
||
|
||
|
||
def tensor_to_base64_string(
|
||
image_tensor: torch.Tensor,
|
||
total_pixels: int = 2048 * 2048,
|
||
mime_type: str = "image/png",
|
||
) -> str:
|
||
"""Convert [B, H, W, C] or [H, W, C] tensor to a base64 string.
|
||
|
||
Args:
|
||
image_tensor: Input torch.Tensor image.
|
||
total_pixels: Maximum total pixels for potential downscaling.
|
||
mime_type: Target image MIME type (e.g., 'image/png', 'image/jpeg', 'image/webp', 'video/mp4').
|
||
|
||
Returns:
|
||
Base64 encoded string of the image.
|
||
"""
|
||
pil_image = _tensor_to_pil(image_tensor, total_pixels=total_pixels)
|
||
img_byte_arr = _pil_to_bytesio(pil_image, mime_type=mime_type)
|
||
img_bytes = img_byte_arr.getvalue()
|
||
# Encode bytes to base64 string
|
||
base64_encoded_string = base64.b64encode(img_bytes).decode("utf-8")
|
||
return base64_encoded_string
|
||
|
||
|
||
def tensor_to_data_uri(
|
||
image_tensor: torch.Tensor,
|
||
total_pixels: int = 2048 * 2048,
|
||
mime_type: str = "image/png",
|
||
) -> str:
|
||
"""Converts a tensor image to a Data URI string.
|
||
|
||
Args:
|
||
image_tensor: Input torch.Tensor image.
|
||
total_pixels: Maximum total pixels for potential downscaling.
|
||
mime_type: Target image MIME type (e.g., 'image/png', 'image/jpeg', 'image/webp').
|
||
|
||
Returns:
|
||
Data URI string (e.g., 'data:image/png;base64,...').
|
||
"""
|
||
base64_string = tensor_to_base64_string(image_tensor, total_pixels, mime_type)
|
||
return f"data:{mime_type};base64,{base64_string}"
|
||
|
||
|
||
def text_filepath_to_base64_string(filepath: str) -> str:
|
||
"""Converts a text file to a base64 string."""
|
||
with open(filepath, "rb") as f:
|
||
file_content = f.read()
|
||
return base64.b64encode(file_content).decode("utf-8")
|
||
|
||
|
||
def text_filepath_to_data_uri(filepath: str) -> str:
|
||
"""Converts a text file to a data URI."""
|
||
base64_string = text_filepath_to_base64_string(filepath)
|
||
mime_type, _ = mimetypes.guess_type(filepath)
|
||
if mime_type is None:
|
||
mime_type = "application/octet-stream"
|
||
return f"data:{mime_type};base64,{base64_string}"
|
||
|
||
|
||
async def upload_file_to_comfyapi(
|
||
file_bytes_io: BytesIO,
|
||
filename: str,
|
||
upload_mime_type: Optional[str],
|
||
auth_kwargs: Optional[dict[str, str]] = None,
|
||
) -> str:
|
||
"""
|
||
Uploads a single file to ComfyUI API and returns its download URL.
|
||
|
||
Args:
|
||
file_bytes_io: BytesIO object containing the file data.
|
||
filename: The filename of the file.
|
||
upload_mime_type: MIME type of the file.
|
||
auth_kwargs: Optional authentication token(s).
|
||
|
||
Returns:
|
||
The download URL for the uploaded file.
|
||
"""
|
||
if upload_mime_type is None:
|
||
request_object = UploadRequest(file_name=filename)
|
||
else:
|
||
request_object = UploadRequest(file_name=filename, content_type=upload_mime_type)
|
||
operation = SynchronousOperation(
|
||
endpoint=ApiEndpoint(
|
||
path="/customers/storage",
|
||
method=HttpMethod.POST,
|
||
request_model=UploadRequest,
|
||
response_model=UploadResponse,
|
||
),
|
||
request=request_object,
|
||
auth_kwargs=auth_kwargs,
|
||
)
|
||
|
||
response: UploadResponse = await operation.execute()
|
||
await ApiClient.upload_file(response.upload_url, file_bytes_io, content_type=upload_mime_type)
|
||
return response.download_url
|
||
|
||
|
||
def video_to_base64_string(
|
||
video: VideoInput,
|
||
container_format: VideoContainer = None,
|
||
codec: VideoCodec = None
|
||
) -> str:
|
||
"""
|
||
Converts a video input to a base64 string.
|
||
|
||
Args:
|
||
video: The video input to convert
|
||
container_format: Optional container format to use (defaults to video.container if available)
|
||
codec: Optional codec to use (defaults to video.codec if available)
|
||
"""
|
||
video_bytes_io = io.BytesIO()
|
||
|
||
# Use provided format/codec if specified, otherwise use video's own if available
|
||
format_to_use = container_format if container_format is not None else getattr(video, 'container', VideoContainer.MP4)
|
||
codec_to_use = codec if codec is not None else getattr(video, 'codec', VideoCodec.H264)
|
||
|
||
video.save_to(video_bytes_io, format=format_to_use, codec=codec_to_use)
|
||
video_bytes_io.seek(0)
|
||
return base64.b64encode(video_bytes_io.getvalue()).decode("utf-8")
|
||
|
||
|
||
async def upload_video_to_comfyapi(
|
||
video: VideoInput,
|
||
auth_kwargs: Optional[dict[str, str]] = None,
|
||
container: VideoContainer = VideoContainer.MP4,
|
||
codec: VideoCodec = VideoCodec.H264,
|
||
max_duration: Optional[int] = None,
|
||
) -> str:
|
||
"""
|
||
Uploads a single video to ComfyUI API and returns its download URL.
|
||
Uses the specified container and codec for saving the video before upload.
|
||
|
||
Args:
|
||
video: VideoInput object (Comfy VIDEO type).
|
||
auth_kwargs: Optional authentication token(s).
|
||
container: The video container format to use (default: MP4).
|
||
codec: The video codec to use (default: H264).
|
||
max_duration: Optional maximum duration of the video in seconds. If the video is longer than this, an error will be raised.
|
||
|
||
Returns:
|
||
The download URL for the uploaded video file.
|
||
"""
|
||
if max_duration is not None:
|
||
try:
|
||
actual_duration = video.duration_seconds
|
||
if actual_duration is not None and actual_duration > max_duration:
|
||
raise ValueError(
|
||
f"Video duration ({actual_duration:.2f}s) exceeds the maximum allowed ({max_duration}s)."
|
||
)
|
||
except Exception as e:
|
||
logging.error(f"Error getting video duration: {e}")
|
||
raise ValueError(f"Could not verify video duration from source: {e}") from e
|
||
|
||
upload_mime_type = f"video/{container.value.lower()}"
|
||
filename = f"uploaded_video.{container.value.lower()}"
|
||
|
||
# Convert VideoInput to BytesIO using specified container/codec
|
||
video_bytes_io = io.BytesIO()
|
||
video.save_to(video_bytes_io, format=container, codec=codec)
|
||
video_bytes_io.seek(0)
|
||
|
||
return await upload_file_to_comfyapi(video_bytes_io, filename, upload_mime_type, auth_kwargs)
|
||
|
||
|
||
def audio_tensor_to_contiguous_ndarray(waveform: torch.Tensor) -> np.ndarray:
|
||
"""
|
||
Prepares audio waveform for av library by converting to a contiguous numpy array.
|
||
|
||
Args:
|
||
waveform: a tensor of shape (1, channels, samples) derived from a Comfy `AUDIO` type.
|
||
|
||
Returns:
|
||
Contiguous numpy array of the audio waveform. If the audio was batched,
|
||
the first item is taken.
|
||
"""
|
||
if waveform.ndim != 3 or waveform.shape[0] != 1:
|
||
raise ValueError("Expected waveform tensor shape (1, channels, samples)")
|
||
|
||
# If batch is > 1, take first item
|
||
if waveform.shape[0] > 1:
|
||
waveform = waveform[0]
|
||
|
||
# Prepare for av: remove batch dim, move to CPU, make contiguous, convert to numpy array
|
||
audio_data_np = waveform.squeeze(0).cpu().contiguous().numpy()
|
||
if audio_data_np.dtype != np.float32:
|
||
audio_data_np = audio_data_np.astype(np.float32)
|
||
|
||
return audio_data_np
|
||
|
||
|
||
def audio_ndarray_to_bytesio(
|
||
audio_data_np: np.ndarray,
|
||
sample_rate: int,
|
||
container_format: str = "mp4",
|
||
codec_name: str = "aac",
|
||
) -> BytesIO:
|
||
"""
|
||
Encodes a numpy array of audio data into a BytesIO object.
|
||
"""
|
||
audio_bytes_io = io.BytesIO()
|
||
with av.open(audio_bytes_io, mode="w", format=container_format) as output_container:
|
||
audio_stream = output_container.add_stream(codec_name, rate=sample_rate)
|
||
frame = av.AudioFrame.from_ndarray(
|
||
audio_data_np,
|
||
format="fltp",
|
||
layout="stereo" if audio_data_np.shape[0] > 1 else "mono",
|
||
)
|
||
frame.sample_rate = sample_rate
|
||
frame.pts = 0
|
||
|
||
for packet in audio_stream.encode(frame):
|
||
output_container.mux(packet)
|
||
|
||
# Flush stream
|
||
for packet in audio_stream.encode(None):
|
||
output_container.mux(packet)
|
||
|
||
audio_bytes_io.seek(0)
|
||
return audio_bytes_io
|
||
|
||
|
||
async def upload_audio_to_comfyapi(
|
||
audio: AudioInput,
|
||
auth_kwargs: Optional[dict[str, str]] = None,
|
||
container_format: str = "mp4",
|
||
codec_name: str = "aac",
|
||
mime_type: str = "audio/mp4",
|
||
filename: str = "uploaded_audio.mp4",
|
||
) -> str:
|
||
"""
|
||
Uploads a single audio input to ComfyUI API and returns its download URL.
|
||
Encodes the raw waveform into the specified format before uploading.
|
||
|
||
Args:
|
||
audio: a Comfy `AUDIO` type (contains waveform tensor and sample_rate)
|
||
auth_kwargs: Optional authentication token(s).
|
||
|
||
Returns:
|
||
The download URL for the uploaded audio file.
|
||
"""
|
||
sample_rate: int = audio["sample_rate"]
|
||
waveform: torch.Tensor = audio["waveform"]
|
||
audio_data_np = audio_tensor_to_contiguous_ndarray(waveform)
|
||
audio_bytes_io = audio_ndarray_to_bytesio(
|
||
audio_data_np, sample_rate, container_format, codec_name
|
||
)
|
||
|
||
return await upload_file_to_comfyapi(audio_bytes_io, filename, mime_type, auth_kwargs)
|
||
|
||
|
||
def audio_to_base64_string(
|
||
audio: AudioInput, container_format: str = "mp4", codec_name: str = "aac"
|
||
) -> str:
|
||
"""Converts an audio input to a base64 string."""
|
||
sample_rate: int = audio["sample_rate"]
|
||
waveform: torch.Tensor = audio["waveform"]
|
||
audio_data_np = audio_tensor_to_contiguous_ndarray(waveform)
|
||
audio_bytes_io = audio_ndarray_to_bytesio(
|
||
audio_data_np, sample_rate, container_format, codec_name
|
||
)
|
||
audio_bytes = audio_bytes_io.getvalue()
|
||
return base64.b64encode(audio_bytes).decode("utf-8")
|
||
|
||
|
||
async def upload_images_to_comfyapi(
|
||
image: torch.Tensor,
|
||
max_images=8,
|
||
auth_kwargs: Optional[dict[str, str]] = None,
|
||
mime_type: Optional[str] = None,
|
||
) -> list[str]:
|
||
"""
|
||
Uploads images to ComfyUI API and returns download URLs.
|
||
To upload multiple images, stack them in the batch dimension first.
|
||
|
||
Args:
|
||
image: Input torch.Tensor image.
|
||
max_images: Maximum number of images to upload.
|
||
auth_kwargs: Optional authentication token(s).
|
||
mime_type: Optional MIME type for the image.
|
||
"""
|
||
# if batch, try to upload each file if max_images is greater than 0
|
||
download_urls: list[str] = []
|
||
is_batch = len(image.shape) > 3
|
||
batch_len = image.shape[0] if is_batch else 1
|
||
|
||
for idx in range(min(batch_len, max_images)):
|
||
tensor = image[idx] if is_batch else image
|
||
img_io = tensor_to_bytesio(tensor, mime_type=mime_type)
|
||
url = await upload_file_to_comfyapi(img_io, img_io.name, mime_type, auth_kwargs)
|
||
download_urls.append(url)
|
||
return download_urls
|
||
|
||
|
||
def resize_mask_to_image(
|
||
mask: torch.Tensor,
|
||
image: torch.Tensor,
|
||
upscale_method="nearest-exact",
|
||
crop="disabled",
|
||
allow_gradient=True,
|
||
add_channel_dim=False,
|
||
):
|
||
"""
|
||
Resize mask to be the same dimensions as an image, while maintaining proper format for API calls.
|
||
"""
|
||
_, H, W, _ = image.shape
|
||
mask = mask.unsqueeze(-1)
|
||
mask = mask.movedim(-1, 1)
|
||
mask = common_upscale(
|
||
mask, width=W, height=H, upscale_method=upscale_method, crop=crop
|
||
)
|
||
mask = mask.movedim(1, -1)
|
||
if not add_channel_dim:
|
||
mask = mask.squeeze(-1)
|
||
if not allow_gradient:
|
||
mask = (mask > 0.5).float()
|
||
return mask
|
||
|
||
|
||
def validate_string(
|
||
string: str,
|
||
strip_whitespace=True,
|
||
field_name="prompt",
|
||
min_length=None,
|
||
max_length=None,
|
||
):
|
||
if string is None:
|
||
raise Exception(f"Field '{field_name}' cannot be empty.")
|
||
if strip_whitespace:
|
||
string = string.strip()
|
||
if min_length and len(string) < min_length:
|
||
raise Exception(
|
||
f"Field '{field_name}' cannot be shorter than {min_length} characters; was {len(string)} characters long."
|
||
)
|
||
if max_length and len(string) > max_length:
|
||
raise Exception(
|
||
f" Field '{field_name} cannot be longer than {max_length} characters; was {len(string)} characters long."
|
||
)
|
||
|
||
|
||
def image_tensor_pair_to_batch(
|
||
image1: torch.Tensor, image2: torch.Tensor
|
||
) -> torch.Tensor:
|
||
"""
|
||
Converts a pair of image tensors to a batch tensor.
|
||
If the images are not the same size, the smaller image is resized to
|
||
match the larger image.
|
||
"""
|
||
if image1.shape[1:] != image2.shape[1:]:
|
||
image2 = common_upscale(
|
||
image2.movedim(-1, 1),
|
||
image1.shape[2],
|
||
image1.shape[1],
|
||
"bilinear",
|
||
"center",
|
||
).movedim(1, -1)
|
||
return torch.cat((image1, image2), dim=0)
|