mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-08-14 09:06:32 +00:00
401 lines
16 KiB
Python
401 lines
16 KiB
Python
# https://github.com/QwenLM/Qwen-Image (Apache 2.0)
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.nn.functional as F
|
|
from typing import Optional, Tuple
|
|
from einops import repeat
|
|
|
|
from comfy.ldm.lightricks.model import TimestepEmbedding, Timesteps
|
|
from comfy.ldm.modules.attention import optimized_attention_masked
|
|
from comfy.ldm.flux.layers import EmbedND
|
|
import comfy.ldm.common_dit
|
|
|
|
class GELU(nn.Module):
|
|
def __init__(self, dim_in: int, dim_out: int, approximate: str = "none", bias: bool = True, dtype=None, device=None, operations=None):
|
|
super().__init__()
|
|
self.proj = operations.Linear(dim_in, dim_out, bias=bias, dtype=dtype, device=device)
|
|
self.approximate = approximate
|
|
|
|
def forward(self, hidden_states):
|
|
hidden_states = self.proj(hidden_states)
|
|
hidden_states = F.gelu(hidden_states, approximate=self.approximate)
|
|
return hidden_states
|
|
|
|
|
|
class FeedForward(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
dim_out: Optional[int] = None,
|
|
mult: int = 4,
|
|
dropout: float = 0.0,
|
|
inner_dim=None,
|
|
bias: bool = True,
|
|
dtype=None, device=None, operations=None
|
|
):
|
|
super().__init__()
|
|
if inner_dim is None:
|
|
inner_dim = int(dim * mult)
|
|
dim_out = dim_out if dim_out is not None else dim
|
|
|
|
self.net = nn.ModuleList([])
|
|
self.net.append(GELU(dim, inner_dim, approximate="tanh", bias=bias, dtype=dtype, device=device, operations=operations))
|
|
self.net.append(nn.Dropout(dropout))
|
|
self.net.append(operations.Linear(inner_dim, dim_out, bias=bias, dtype=dtype, device=device))
|
|
|
|
def forward(self, hidden_states: torch.Tensor, *args, **kwargs) -> torch.Tensor:
|
|
for module in self.net:
|
|
hidden_states = module(hidden_states)
|
|
return hidden_states
|
|
|
|
|
|
def apply_rotary_emb(x, freqs_cis):
|
|
if x.shape[1] == 0:
|
|
return x
|
|
|
|
t_ = x.reshape(*x.shape[:-1], -1, 1, 2)
|
|
t_out = freqs_cis[..., 0] * t_[..., 0] + freqs_cis[..., 1] * t_[..., 1]
|
|
return t_out.reshape(*x.shape)
|
|
|
|
|
|
class QwenTimestepProjEmbeddings(nn.Module):
|
|
def __init__(self, embedding_dim, pooled_projection_dim, dtype=None, device=None, operations=None):
|
|
super().__init__()
|
|
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0, scale=1000)
|
|
self.timestep_embedder = TimestepEmbedding(
|
|
in_channels=256,
|
|
time_embed_dim=embedding_dim,
|
|
dtype=dtype,
|
|
device=device,
|
|
operations=operations
|
|
)
|
|
|
|
def forward(self, timestep, hidden_states):
|
|
timesteps_proj = self.time_proj(timestep)
|
|
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_states.dtype))
|
|
return timesteps_emb
|
|
|
|
|
|
class Attention(nn.Module):
|
|
def __init__(
|
|
self,
|
|
query_dim: int,
|
|
dim_head: int = 64,
|
|
heads: int = 8,
|
|
dropout: float = 0.0,
|
|
bias: bool = False,
|
|
eps: float = 1e-5,
|
|
out_bias: bool = True,
|
|
out_dim: int = None,
|
|
out_context_dim: int = None,
|
|
dtype=None,
|
|
device=None,
|
|
operations=None
|
|
):
|
|
super().__init__()
|
|
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
|
|
self.inner_kv_dim = self.inner_dim
|
|
self.heads = heads
|
|
self.dim_head = dim_head
|
|
self.out_dim = out_dim if out_dim is not None else query_dim
|
|
self.out_context_dim = out_context_dim if out_context_dim is not None else query_dim
|
|
self.dropout = dropout
|
|
|
|
# Q/K normalization
|
|
self.norm_q = operations.RMSNorm(dim_head, eps=eps, elementwise_affine=True, dtype=dtype, device=device)
|
|
self.norm_k = operations.RMSNorm(dim_head, eps=eps, elementwise_affine=True, dtype=dtype, device=device)
|
|
self.norm_added_q = operations.RMSNorm(dim_head, eps=eps, dtype=dtype, device=device)
|
|
self.norm_added_k = operations.RMSNorm(dim_head, eps=eps, dtype=dtype, device=device)
|
|
|
|
# Image stream projections
|
|
self.to_q = operations.Linear(query_dim, self.inner_dim, bias=bias, dtype=dtype, device=device)
|
|
self.to_k = operations.Linear(query_dim, self.inner_kv_dim, bias=bias, dtype=dtype, device=device)
|
|
self.to_v = operations.Linear(query_dim, self.inner_kv_dim, bias=bias, dtype=dtype, device=device)
|
|
|
|
# Text stream projections
|
|
self.add_q_proj = operations.Linear(query_dim, self.inner_dim, bias=bias, dtype=dtype, device=device)
|
|
self.add_k_proj = operations.Linear(query_dim, self.inner_kv_dim, bias=bias, dtype=dtype, device=device)
|
|
self.add_v_proj = operations.Linear(query_dim, self.inner_kv_dim, bias=bias, dtype=dtype, device=device)
|
|
|
|
# Output projections
|
|
self.to_out = nn.ModuleList([
|
|
operations.Linear(self.inner_dim, self.out_dim, bias=out_bias, dtype=dtype, device=device),
|
|
nn.Dropout(dropout)
|
|
])
|
|
self.to_add_out = operations.Linear(self.inner_dim, self.out_context_dim, bias=out_bias, dtype=dtype, device=device)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.FloatTensor, # Image stream
|
|
encoder_hidden_states: torch.FloatTensor = None, # Text stream
|
|
encoder_hidden_states_mask: torch.FloatTensor = None,
|
|
attention_mask: Optional[torch.FloatTensor] = None,
|
|
image_rotary_emb: Optional[torch.Tensor] = None,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
seq_txt = encoder_hidden_states.shape[1]
|
|
|
|
img_query = self.to_q(hidden_states).unflatten(-1, (self.heads, -1))
|
|
img_key = self.to_k(hidden_states).unflatten(-1, (self.heads, -1))
|
|
img_value = self.to_v(hidden_states).unflatten(-1, (self.heads, -1))
|
|
|
|
txt_query = self.add_q_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1))
|
|
txt_key = self.add_k_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1))
|
|
txt_value = self.add_v_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1))
|
|
|
|
img_query = self.norm_q(img_query)
|
|
img_key = self.norm_k(img_key)
|
|
txt_query = self.norm_added_q(txt_query)
|
|
txt_key = self.norm_added_k(txt_key)
|
|
|
|
joint_query = torch.cat([txt_query, img_query], dim=1)
|
|
joint_key = torch.cat([txt_key, img_key], dim=1)
|
|
joint_value = torch.cat([txt_value, img_value], dim=1)
|
|
|
|
joint_query = apply_rotary_emb(joint_query, image_rotary_emb)
|
|
joint_key = apply_rotary_emb(joint_key, image_rotary_emb)
|
|
|
|
joint_query = joint_query.flatten(start_dim=2)
|
|
joint_key = joint_key.flatten(start_dim=2)
|
|
joint_value = joint_value.flatten(start_dim=2)
|
|
|
|
joint_hidden_states = optimized_attention_masked(joint_query, joint_key, joint_value, self.heads, attention_mask)
|
|
|
|
txt_attn_output = joint_hidden_states[:, :seq_txt, :]
|
|
img_attn_output = joint_hidden_states[:, seq_txt:, :]
|
|
|
|
img_attn_output = self.to_out[0](img_attn_output)
|
|
img_attn_output = self.to_out[1](img_attn_output)
|
|
txt_attn_output = self.to_add_out(txt_attn_output)
|
|
|
|
return img_attn_output, txt_attn_output
|
|
|
|
|
|
class QwenImageTransformerBlock(nn.Module):
|
|
def __init__(
|
|
self,
|
|
dim: int,
|
|
num_attention_heads: int,
|
|
attention_head_dim: int,
|
|
eps: float = 1e-6,
|
|
dtype=None,
|
|
device=None,
|
|
operations=None
|
|
):
|
|
super().__init__()
|
|
self.dim = dim
|
|
self.num_attention_heads = num_attention_heads
|
|
self.attention_head_dim = attention_head_dim
|
|
|
|
self.img_mod = nn.Sequential(
|
|
nn.SiLU(),
|
|
operations.Linear(dim, 6 * dim, bias=True, dtype=dtype, device=device),
|
|
)
|
|
self.img_norm1 = operations.LayerNorm(dim, elementwise_affine=False, eps=eps, dtype=dtype, device=device)
|
|
self.img_norm2 = operations.LayerNorm(dim, elementwise_affine=False, eps=eps, dtype=dtype, device=device)
|
|
self.img_mlp = FeedForward(dim=dim, dim_out=dim, dtype=dtype, device=device, operations=operations)
|
|
|
|
self.txt_mod = nn.Sequential(
|
|
nn.SiLU(),
|
|
operations.Linear(dim, 6 * dim, bias=True, dtype=dtype, device=device),
|
|
)
|
|
self.txt_norm1 = operations.LayerNorm(dim, elementwise_affine=False, eps=eps, dtype=dtype, device=device)
|
|
self.txt_norm2 = operations.LayerNorm(dim, elementwise_affine=False, eps=eps, dtype=dtype, device=device)
|
|
self.txt_mlp = FeedForward(dim=dim, dim_out=dim, dtype=dtype, device=device, operations=operations)
|
|
|
|
self.attn = Attention(
|
|
query_dim=dim,
|
|
dim_head=attention_head_dim,
|
|
heads=num_attention_heads,
|
|
out_dim=dim,
|
|
bias=True,
|
|
eps=eps,
|
|
dtype=dtype,
|
|
device=device,
|
|
operations=operations,
|
|
)
|
|
|
|
def _modulate(self, x, mod_params):
|
|
shift, scale, gate = mod_params.chunk(3, dim=-1)
|
|
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1), gate.unsqueeze(1)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
encoder_hidden_states: torch.Tensor,
|
|
encoder_hidden_states_mask: torch.Tensor,
|
|
temb: torch.Tensor,
|
|
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
img_mod_params = self.img_mod(temb)
|
|
txt_mod_params = self.txt_mod(temb)
|
|
img_mod1, img_mod2 = img_mod_params.chunk(2, dim=-1)
|
|
txt_mod1, txt_mod2 = txt_mod_params.chunk(2, dim=-1)
|
|
|
|
img_normed = self.img_norm1(hidden_states)
|
|
img_modulated, img_gate1 = self._modulate(img_normed, img_mod1)
|
|
txt_normed = self.txt_norm1(encoder_hidden_states)
|
|
txt_modulated, txt_gate1 = self._modulate(txt_normed, txt_mod1)
|
|
|
|
img_attn_output, txt_attn_output = self.attn(
|
|
hidden_states=img_modulated,
|
|
encoder_hidden_states=txt_modulated,
|
|
encoder_hidden_states_mask=encoder_hidden_states_mask,
|
|
image_rotary_emb=image_rotary_emb,
|
|
)
|
|
|
|
hidden_states = hidden_states + img_gate1 * img_attn_output
|
|
encoder_hidden_states = encoder_hidden_states + txt_gate1 * txt_attn_output
|
|
|
|
img_normed2 = self.img_norm2(hidden_states)
|
|
img_modulated2, img_gate2 = self._modulate(img_normed2, img_mod2)
|
|
hidden_states = hidden_states + img_gate2 * self.img_mlp(img_modulated2)
|
|
|
|
txt_normed2 = self.txt_norm2(encoder_hidden_states)
|
|
txt_modulated2, txt_gate2 = self._modulate(txt_normed2, txt_mod2)
|
|
encoder_hidden_states = encoder_hidden_states + txt_gate2 * self.txt_mlp(txt_modulated2)
|
|
|
|
return encoder_hidden_states, hidden_states
|
|
|
|
|
|
class LastLayer(nn.Module):
|
|
def __init__(
|
|
self,
|
|
embedding_dim: int,
|
|
conditioning_embedding_dim: int,
|
|
elementwise_affine=False,
|
|
eps=1e-6,
|
|
bias=True,
|
|
dtype=None, device=None, operations=None
|
|
):
|
|
super().__init__()
|
|
self.silu = nn.SiLU()
|
|
self.linear = operations.Linear(conditioning_embedding_dim, embedding_dim * 2, bias=bias, dtype=dtype, device=device)
|
|
self.norm = operations.LayerNorm(embedding_dim, eps, elementwise_affine=False, bias=bias, dtype=dtype, device=device)
|
|
|
|
def forward(self, x: torch.Tensor, conditioning_embedding: torch.Tensor) -> torch.Tensor:
|
|
emb = self.linear(self.silu(conditioning_embedding))
|
|
scale, shift = torch.chunk(emb, 2, dim=1)
|
|
x = self.norm(x) * (1 + scale)[:, None, :] + shift[:, None, :]
|
|
return x
|
|
|
|
|
|
class QwenImageTransformer2DModel(nn.Module):
|
|
def __init__(
|
|
self,
|
|
patch_size: int = 2,
|
|
in_channels: int = 64,
|
|
out_channels: Optional[int] = 16,
|
|
num_layers: int = 60,
|
|
attention_head_dim: int = 128,
|
|
num_attention_heads: int = 24,
|
|
joint_attention_dim: int = 3584,
|
|
pooled_projection_dim: int = 768,
|
|
guidance_embeds: bool = False,
|
|
axes_dims_rope: Tuple[int, int, int] = (16, 56, 56),
|
|
image_model=None,
|
|
dtype=None,
|
|
device=None,
|
|
operations=None,
|
|
):
|
|
super().__init__()
|
|
self.dtype = dtype
|
|
self.patch_size = patch_size
|
|
self.out_channels = out_channels or in_channels
|
|
self.inner_dim = num_attention_heads * attention_head_dim
|
|
|
|
self.pe_embedder = EmbedND(dim=attention_head_dim, theta=10000, axes_dim=list(axes_dims_rope))
|
|
|
|
self.time_text_embed = QwenTimestepProjEmbeddings(
|
|
embedding_dim=self.inner_dim,
|
|
pooled_projection_dim=pooled_projection_dim,
|
|
dtype=dtype,
|
|
device=device,
|
|
operations=operations
|
|
)
|
|
|
|
self.txt_norm = operations.RMSNorm(joint_attention_dim, eps=1e-6, dtype=dtype, device=device)
|
|
self.img_in = operations.Linear(in_channels, self.inner_dim, dtype=dtype, device=device)
|
|
self.txt_in = operations.Linear(joint_attention_dim, self.inner_dim, dtype=dtype, device=device)
|
|
|
|
self.transformer_blocks = nn.ModuleList([
|
|
QwenImageTransformerBlock(
|
|
dim=self.inner_dim,
|
|
num_attention_heads=num_attention_heads,
|
|
attention_head_dim=attention_head_dim,
|
|
dtype=dtype,
|
|
device=device,
|
|
operations=operations
|
|
)
|
|
for _ in range(num_layers)
|
|
])
|
|
|
|
self.norm_out = LastLayer(self.inner_dim, self.inner_dim, dtype=dtype, device=device, operations=operations)
|
|
self.proj_out = operations.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True, dtype=dtype, device=device)
|
|
self.gradient_checkpointing = False
|
|
|
|
def pos_embeds(self, x, context):
|
|
bs, c, t, h, w = x.shape
|
|
patch_size = self.patch_size
|
|
h_len = ((h + (patch_size // 2)) // patch_size)
|
|
w_len = ((w + (patch_size // 2)) // patch_size)
|
|
|
|
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
|
|
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
|
|
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
|
|
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
|
|
|
txt_start = round(max(h_len, w_len))
|
|
txt_ids = torch.linspace(txt_start, txt_start + context.shape[1], steps=context.shape[1], device=x.device, dtype=x.dtype).reshape(1, -1, 1).repeat(bs, 1, 3)
|
|
ids = torch.cat((txt_ids, img_ids), dim=1)
|
|
return self.pe_embedder(ids).squeeze(1).unsqueeze(2).to(x.dtype)
|
|
|
|
def forward(
|
|
self,
|
|
x,
|
|
timesteps,
|
|
context,
|
|
attention_mask=None,
|
|
guidance: torch.Tensor = None,
|
|
**kwargs
|
|
):
|
|
timestep = timesteps
|
|
encoder_hidden_states = context
|
|
encoder_hidden_states_mask = attention_mask
|
|
|
|
image_rotary_emb = self.pos_embeds(x, context)
|
|
|
|
hidden_states = comfy.ldm.common_dit.pad_to_patch_size(x, (1, self.patch_size, self.patch_size))
|
|
orig_shape = hidden_states.shape
|
|
hidden_states = hidden_states.view(orig_shape[0], orig_shape[1], orig_shape[-2] // 2, 2, orig_shape[-1] // 2, 2)
|
|
hidden_states = hidden_states.permute(0, 2, 4, 1, 3, 5)
|
|
hidden_states = hidden_states.reshape(orig_shape[0], (orig_shape[-2] // 2) * (orig_shape[-1] // 2), orig_shape[1] * 4)
|
|
|
|
hidden_states = self.img_in(hidden_states)
|
|
encoder_hidden_states = self.txt_norm(encoder_hidden_states)
|
|
encoder_hidden_states = self.txt_in(encoder_hidden_states)
|
|
|
|
if guidance is not None:
|
|
guidance = guidance * 1000
|
|
|
|
temb = (
|
|
self.time_text_embed(timestep, hidden_states)
|
|
if guidance is None
|
|
else self.time_text_embed(timestep, guidance, hidden_states)
|
|
)
|
|
|
|
for block in self.transformer_blocks:
|
|
encoder_hidden_states, hidden_states = block(
|
|
hidden_states=hidden_states,
|
|
encoder_hidden_states=encoder_hidden_states,
|
|
encoder_hidden_states_mask=encoder_hidden_states_mask,
|
|
temb=temb,
|
|
image_rotary_emb=image_rotary_emb,
|
|
)
|
|
|
|
hidden_states = self.norm_out(hidden_states, temb)
|
|
hidden_states = self.proj_out(hidden_states)
|
|
|
|
hidden_states = hidden_states.view(orig_shape[0], orig_shape[-2] // 2, orig_shape[-1] // 2, orig_shape[1], 2, 2)
|
|
hidden_states = hidden_states.permute(0, 3, 1, 4, 2, 5)
|
|
return hidden_states.reshape(orig_shape)[:, :, :, :x.shape[-2], :x.shape[-1]]
|