ComfyUI/comfy_extras/v3/nodes_webcam.py
2025-07-16 11:24:46 +03:00

93 lines
3.0 KiB
Python

import hashlib
import numpy as np
import torch
from PIL import Image, ImageOps, ImageSequence
import folder_paths
import node_helpers
import nodes
from comfy_api.v3 import io
class WebcamCapture(io.ComfyNodeV3):
@classmethod
def define_schema(cls):
return io.SchemaV3(
node_id="WebcamCapture_V3",
display_name="Webcam Capture _V3",
category="image",
inputs=[
io.Webcam.Input("image"),
io.Int.Input("width", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1),
io.Int.Input("height", default=0, min=0, max=nodes.MAX_RESOLUTION, step=1),
io.Boolean.Input("capture_on_queue", default=True),
],
outputs=[
io.Image.Output(),
],
)
@classmethod
def execute(cls, image, **kwargs) -> io.NodeOutput:
img = node_helpers.pillow(Image.open, folder_paths.get_annotated_filepath(image))
output_images = []
output_masks = []
w, h = None, None
excluded_formats = ["MPO"]
for i in ImageSequence.Iterator(img):
i = node_helpers.pillow(ImageOps.exif_transpose, i)
if i.mode == "I":
i = i.point(lambda i: i * (1 / 255))
image = i.convert("RGB")
if len(output_images) == 0:
w = image.size[0]
h = image.size[1]
if image.size[0] != w or image.size[1] != h:
continue
image = np.array(image).astype(np.float32) / 255.0
image = torch.from_numpy(image)[None,]
if "A" in i.getbands():
mask = np.array(i.getchannel("A")).astype(np.float32) / 255.0
mask = 1.0 - torch.from_numpy(mask)
elif i.mode == "P" and "transparency" in i.info:
mask = np.array(i.convert("RGBA").getchannel("A")).astype(np.float32) / 255.0
mask = 1.0 - torch.from_numpy(mask)
else:
mask = torch.zeros((64, 64), dtype=torch.float32, device="cpu")
output_images.append(image)
output_masks.append(mask.unsqueeze(0))
if len(output_images) > 1 and img.format not in excluded_formats:
output_image = torch.cat(output_images, dim=0)
output_mask = torch.cat(output_masks, dim=0)
else:
output_image = output_images[0]
output_mask = output_masks[0]
return io.NodeOutput(output_image, output_mask)
@classmethod
def fingerprint_inputs(s, image, width, height, capture_on_queue):
image_path = folder_paths.get_annotated_filepath(image)
m = hashlib.sha256()
with open(image_path, "rb") as f:
m.update(f.read())
return m.digest().hex()
@classmethod
def validate_inputs(s, image):
if not folder_paths.exists_annotated_filepath(image):
return "Invalid image file: {}".format(image)
return True
NODES_LIST: list[type[io.ComfyNodeV3]] = [WebcamCapture]