2025-07-20 11:28:13 +03:00

378 lines
14 KiB
Python

from __future__ import annotations
import json
import os
import random
from io import BytesIO
from typing import Type
import av
import numpy as np
import torch
import torchaudio
from PIL import Image as PILImage
from PIL.PngImagePlugin import PngInfo
import folder_paths
# used for image preview
from comfy.cli_args import args
from comfy_api.v3.io import ComfyNodeV3, FolderType, Image, _UIOutput
class SavedResult(dict):
def __init__(self, filename: str, subfolder: str, type: FolderType):
super().__init__(filename=filename, subfolder=subfolder,type=type.value)
@property
def filename(self) -> str:
return self["filename"]
@property
def subfolder(self) -> str:
return self["subfolder"]
@property
def type(self) -> FolderType:
return FolderType(self["type"])
def _get_directory_by_folder_type(folder_type: FolderType) -> str:
if folder_type == FolderType.input:
return folder_paths.get_input_directory()
if folder_type == FolderType.output:
return folder_paths.get_output_directory()
return folder_paths.get_temp_directory()
class ImageSaveHelper:
"""A helper class with static methods to handle image saving and metadata."""
@staticmethod
def _convert_tensor_to_pil(image_tensor: torch.Tensor) -> PILImage.Image:
"""Converts a single torch tensor to a PIL Image."""
return PILImage.fromarray(np.clip(255.0 * image_tensor.cpu().numpy(), 0, 255).astype(np.uint8))
@staticmethod
def _create_png_metadata(cls: Type[ComfyNodeV3] | None) -> PngInfo | None:
"""Creates a PngInfo object with prompt and extra_pnginfo."""
if args.disable_metadata or cls is None or not cls.hidden:
return None
metadata = PngInfo()
if cls.hidden.prompt:
metadata.add_text("prompt", json.dumps(cls.hidden.prompt))
if cls.hidden.extra_pnginfo:
for x in cls.hidden.extra_pnginfo:
metadata.add_text(x, json.dumps(cls.hidden.extra_pnginfo[x]))
return metadata
@staticmethod
def _create_animated_png_metadata(cls: Type[ComfyNodeV3] | None) -> PngInfo | None:
"""Creates a PngInfo object with prompt and extra_pnginfo for animated PNGs (APNG)."""
if args.disable_metadata or cls is None or not cls.hidden:
return None
metadata = PngInfo()
if cls.hidden.prompt:
metadata.add(
b"comf",
"prompt".encode("latin-1", "strict")
+ b"\0"
+ json.dumps(cls.hidden.prompt).encode("latin-1", "strict"),
after_idat=True,
)
if cls.hidden.extra_pnginfo:
for x in cls.hidden.extra_pnginfo:
metadata.add(
b"comf",
x.encode("latin-1", "strict")
+ b"\0"
+ json.dumps(cls.hidden.extra_pnginfo[x]).encode("latin-1", "strict"),
after_idat=True,
)
return metadata
@staticmethod
def _create_webp_metadata(pil_image: PILImage.Image, cls: Type[ComfyNodeV3] | None) -> PILImage.Exif:
"""Creates EXIF metadata bytes for WebP images."""
exif_data = pil_image.getexif()
if args.disable_metadata or cls is None or cls.hidden is None:
return exif_data
if cls.hidden.prompt is not None:
exif_data[0x0110] = "prompt:{}".format(json.dumps(cls.hidden.prompt)) # EXIF 0x0110 = Model
if cls.hidden.extra_pnginfo is not None:
inital_exif_tag = 0x010F # EXIF 0x010f = Make
for key, value in cls.hidden.extra_pnginfo.items():
exif_data[inital_exif_tag] = "{}:{}".format(key, json.dumps(value))
inital_exif_tag -= 1
return exif_data
@staticmethod
def save_images(
images, filename_prefix: str, folder_type: FolderType, cls: Type[ComfyNodeV3] | None, compress_level = 4,
) -> list[SavedResult]:
"""Saves a batch of images as individual PNG files."""
full_output_folder, filename, counter, subfolder, _ = folder_paths.get_save_image_path(
filename_prefix, _get_directory_by_folder_type(folder_type), images[0].shape[1], images[0].shape[0]
)
results = []
metadata = ImageSaveHelper._create_png_metadata(cls)
for batch_number, image_tensor in enumerate(images):
img = ImageSaveHelper._convert_tensor_to_pil(image_tensor)
filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
file = f"{filename_with_batch_num}_{counter:05}_.png"
img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=compress_level)
results.append(SavedResult(file, subfolder, folder_type))
counter += 1
return results
@staticmethod
def save_animated_png(
images,
filename_prefix: str,
folder_type: FolderType,
cls: Type[ComfyNodeV3] | None,
fps: float,
compress_level: int
) -> SavedResult:
"""Saves a batch of images as a single animated PNG."""
full_output_folder, filename, counter, subfolder, _ = folder_paths.get_save_image_path(
filename_prefix, _get_directory_by_folder_type(folder_type), images[0].shape[1], images[0].shape[0]
)
pil_images = [ImageSaveHelper._convert_tensor_to_pil(img) for img in images]
metadata = ImageSaveHelper._create_animated_png_metadata(cls)
file = f"{filename}_{counter:05}_.png"
save_path = os.path.join(full_output_folder, file)
pil_images[0].save(
save_path,
pnginfo=metadata,
compress_level=compress_level,
save_all=True,
duration=int(1000.0 / fps),
append_images=pil_images[1:],
)
return SavedResult(file, subfolder, folder_type)
@staticmethod
def save_animated_webp(
images,
filename_prefix: str,
folder_type: FolderType,
cls: Type[ComfyNodeV3] | None,
fps: float,
lossless: bool,
quality: int,
method: int,
) -> SavedResult:
"""Saves a batch of images as a single animated WebP."""
full_output_folder, filename, counter, subfolder, _ = folder_paths.get_save_image_path(
filename_prefix, _get_directory_by_folder_type(folder_type), images[0].shape[1], images[0].shape[0]
)
pil_images = [ImageSaveHelper._convert_tensor_to_pil(img) for img in images]
pil_exif = ImageSaveHelper._create_webp_metadata(pil_images[0], cls)
file = f"{filename}_{counter:05}_.webp"
pil_images[0].save(
os.path.join(full_output_folder, file),
save_all=True,
duration=int(1000.0 / fps),
append_images=pil_images[1:],
exif=pil_exif,
lossless=lossless,
quality=quality,
method=method,
)
return SavedResult(file, subfolder, folder_type)
class PreviewImage(_UIOutput):
def __init__(self, image: Image.Type, animated: bool=False, cls: ComfyNodeV3=None, **kwargs):
self.values = ImageSaveHelper.save_images(
image,
filename_prefix="ComfyUI_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for _ in range(5)),
folder_type=FolderType.temp,
cls=cls,
compress_level=1,
)
self.animated = animated
def as_dict(self):
return {
"images": self.values,
"animated": (self.animated,)
}
class PreviewMask(PreviewImage):
def __init__(self, mask: PreviewMask.Type, animated: bool=False, cls: ComfyNodeV3=None, **kwargs):
preview = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3)
super().__init__(preview, animated, cls, **kwargs)
# class UILatent(_UIOutput):
# def __init__(self, values: list[SavedResult | dict], **kwargs):
# output_dir = folder_paths.get_temp_directory()
# type = "temp"
# prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
# compress_level = 1
# filename_prefix = "ComfyUI"
# full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
# # support save metadata for latent sharing
# prompt_info = ""
# if prompt is not None:
# prompt_info = json.dumps(prompt)
# metadata = None
# if not args.disable_metadata:
# metadata = {"prompt": prompt_info}
# if extra_pnginfo is not None:
# for x in extra_pnginfo:
# metadata[x] = json.dumps(extra_pnginfo[x])
# file = f"{filename}_{counter:05}_.latent"
# results: list[FileLocator] = []
# results.append({
# "filename": file,
# "subfolder": subfolder,
# "type": "output"
# })
# file = os.path.join(full_output_folder, file)
# output = {}
# output["latent_tensor"] = samples["samples"].contiguous()
# output["latent_format_version_0"] = torch.tensor([])
# comfy.utils.save_torch_file(output, file, metadata=metadata)
# self.values = values
# def as_dict(self):
# return {
# "latents": self.values,
# }
class PreviewAudio(_UIOutput):
def __init__(self, audio, cls: ComfyNodeV3=None, **kwargs):
quality = "128k"
format = "flac"
filename_prefix = "ComfyUI_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(
filename_prefix, folder_paths.get_temp_directory()
)
# Prepare metadata dictionary
metadata = {}
if not args.disable_metadata and cls is not None:
if cls.hidden.prompt is not None:
metadata["prompt"] = json.dumps(cls.hidden.prompt)
if cls.hidden.extra_pnginfo is not None:
for x in cls.hidden.extra_pnginfo:
metadata[x] = json.dumps(cls.hidden.extra_pnginfo[x])
# Opus supported sample rates
OPUS_RATES = [8000, 12000, 16000, 24000, 48000]
results = []
for (batch_number, waveform) in enumerate(audio["waveform"].cpu()):
filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
file = f"{filename_with_batch_num}_{counter:05}_.{format}"
output_path = os.path.join(full_output_folder, file)
# Use original sample rate initially
sample_rate = audio["sample_rate"]
# Handle Opus sample rate requirements
if format == "opus":
if sample_rate > 48000:
sample_rate = 48000
elif sample_rate not in OPUS_RATES:
# Find the next highest supported rate
for rate in sorted(OPUS_RATES):
if rate > sample_rate:
sample_rate = rate
break
if sample_rate not in OPUS_RATES: # Fallback if still not supported
sample_rate = 48000
# Resample if necessary
if sample_rate != audio["sample_rate"]:
waveform = torchaudio.functional.resample(waveform, audio["sample_rate"], sample_rate)
# Create output with specified format
output_buffer = BytesIO()
output_container = av.open(output_buffer, mode='w', format=format)
# Set metadata on the container
for key, value in metadata.items():
output_container.metadata[key] = value
# Set up the output stream with appropriate properties
if format == "opus":
out_stream = output_container.add_stream("libopus", rate=sample_rate)
if quality == "64k":
out_stream.bit_rate = 64000
elif quality == "96k":
out_stream.bit_rate = 96000
elif quality == "128k":
out_stream.bit_rate = 128000
elif quality == "192k":
out_stream.bit_rate = 192000
elif quality == "320k":
out_stream.bit_rate = 320000
elif format == "mp3":
out_stream = output_container.add_stream("libmp3lame", rate=sample_rate)
if quality == "V0":
# TODO i would really love to support V3 and V5 but there doesn't seem to be a way to set the qscale level, the property below is a bool
out_stream.codec_context.qscale = 1
elif quality == "128k":
out_stream.bit_rate = 128000
elif quality == "320k":
out_stream.bit_rate = 320000
else: # format == "flac":
out_stream = output_container.add_stream("flac", rate=sample_rate)
frame = av.AudioFrame.from_ndarray(waveform.movedim(0, 1).reshape(1, -1).float().numpy(), format='flt',
layout='mono' if waveform.shape[0] == 1 else 'stereo')
frame.sample_rate = sample_rate
frame.pts = 0
output_container.mux(out_stream.encode(frame))
# Flush encoder
output_container.mux(out_stream.encode(None))
# Close containers
output_container.close()
# Write the output to file
output_buffer.seek(0)
with open(output_path, 'wb') as f:
f.write(output_buffer.getbuffer())
results.append(SavedResult(file, subfolder, FolderType.temp))
counter += 1
self.values = results
def as_dict(self):
return {"audio": self.values}
class PreviewUI3D(_UIOutput):
def __init__(self, values: list[SavedResult | dict], **kwargs):
self.values = values
def as_dict(self):
return {"3d": self.values}
class PreviewText(_UIOutput):
def __init__(self, value: str, **kwargs):
self.value = value
def as_dict(self):
return {"text": (self.value,)}