ComfyUI/comfy_api_nodes/nodes_veo2.py
2025-05-28 23:42:02 -04:00

322 lines
11 KiB
Python

import io
import logging
import base64
import requests
import torch
from typing import Optional
from comfy.comfy_types.node_typing import IO, ComfyNodeABC
from comfy_api.input_impl.video_types import VideoFromFile
from comfy_api_nodes.apis import (
Veo2GenVidRequest,
Veo2GenVidResponse,
Veo2GenVidPollRequest,
Veo2GenVidPollResponse
)
from comfy_api_nodes.apis.client import (
ApiEndpoint,
HttpMethod,
SynchronousOperation,
PollingOperation,
)
from comfy_api_nodes.apinode_utils import (
downscale_image_tensor,
tensor_to_base64_string
)
AVERAGE_DURATION_VIDEO_GEN = 32
def convert_image_to_base64(image: torch.Tensor):
if image is None:
return None
scaled_image = downscale_image_tensor(image, total_pixels=2048*2048)
return tensor_to_base64_string(scaled_image)
def get_video_url_from_response(poll_response: Veo2GenVidPollResponse) -> Optional[str]:
if (
poll_response.response
and hasattr(poll_response.response, "videos")
and poll_response.response.videos
and len(poll_response.response.videos) > 0
):
video = poll_response.response.videos[0]
else:
return None
if hasattr(video, "gcsUri") and video.gcsUri:
return str(video.gcsUri)
return None
class VeoVideoGenerationNode(ComfyNodeABC):
"""
Generates videos from text prompts using Google's Veo API.
Supported models:
- veo-2.0-generate-001
- veo-3.0-generate-preview
This node can create videos from text descriptions and optional image inputs,
with control over parameters like aspect ratio, duration, and more.
"""
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Text description of the video",
},
),
"aspect_ratio": (
IO.COMBO,
{
"options": ["16:9", "9:16"],
"default": "16:9",
"tooltip": "Aspect ratio of the output video",
},
),
},
"optional": {
"negative_prompt": (
IO.STRING,
{
"multiline": True,
"default": "",
"tooltip": "Negative text prompt to guide what to avoid in the video",
},
),
"duration_seconds": (
IO.INT,
{
"default": 5,
"min": 5,
"max": 8,
"step": 1,
"display": "number",
"tooltip": "Duration of the output video in seconds",
},
),
"enhance_prompt": (
IO.BOOLEAN,
{
"default": True,
"tooltip": "Whether to enhance the prompt with AI assistance",
}
),
"person_generation": (
IO.COMBO,
{
"options": ["ALLOW", "BLOCK"],
"default": "ALLOW",
"tooltip": "Whether to allow generating people in the video",
},
),
"seed": (
IO.INT,
{
"default": 0,
"min": 0,
"max": 0xFFFFFFFF,
"step": 1,
"display": "number",
"control_after_generate": True,
"tooltip": "Seed for video generation (0 for random)",
},
),
"image": (IO.IMAGE, {
"default": None,
"tooltip": "Optional reference image to guide video generation",
}),
"model": (
IO.COMBO,
{
"options": ["veo-2.0-generate-001", "veo-3.0-generate-preview"],
"default": "veo-2.0-generate-001",
"tooltip": "Model to use for video generation. Defaults to veo 2.0",
},
),
},
"hidden": {
"auth_token": "AUTH_TOKEN_COMFY_ORG",
"comfy_api_key": "API_KEY_COMFY_ORG",
"unique_id": "UNIQUE_ID",
},
}
RETURN_TYPES = (IO.VIDEO,)
FUNCTION = "generate_video"
CATEGORY = "api node/video/Veo"
DESCRIPTION = "Generates videos from text prompts using Google's Veo API"
API_NODE = True
def generate_video(
self,
prompt,
aspect_ratio="16:9",
negative_prompt="",
duration_seconds=5,
enhance_prompt=True,
person_generation="ALLOW",
seed=0,
image=None,
model="veo-2.0-generate-001",
unique_id: Optional[str] = None,
**kwargs,
):
# Prepare the instances for the request
instances = []
instance = {
"prompt": prompt
}
# Add image if provided
if image is not None:
image_base64 = convert_image_to_base64(image)
if image_base64:
instance["image"] = {
"bytesBase64Encoded": image_base64,
"mimeType": "image/png"
}
instances.append(instance)
# Create parameters dictionary
parameters = {
"aspectRatio": aspect_ratio,
"personGeneration": person_generation,
"durationSeconds": duration_seconds,
"enhancePrompt": enhance_prompt,
}
# Add optional parameters if provided
if negative_prompt:
parameters["negativePrompt"] = negative_prompt
if seed > 0:
parameters["seed"] = seed
# Initial request to start video generation
initial_operation = SynchronousOperation(
endpoint=ApiEndpoint(
path=f"/proxy/veo/{model}/generate",
method=HttpMethod.POST,
request_model=Veo2GenVidRequest,
response_model=Veo2GenVidResponse
),
request=Veo2GenVidRequest(
instances=instances,
parameters=parameters
),
auth_kwargs=kwargs,
)
initial_response = initial_operation.execute()
operation_name = initial_response.name
logging.info(f"Veo generation started with operation name: {operation_name}")
# Define status extractor function
def status_extractor(response):
# Only return "completed" if the operation is done, regardless of success or failure
# We'll check for errors after polling completes
return "completed" if response.done else "pending"
# Define progress extractor function
def progress_extractor(response):
# Could be enhanced if the API provides progress information
return None
# Define the polling operation
poll_operation = PollingOperation(
poll_endpoint=ApiEndpoint(
path=f"/proxy/veo/{model}/poll",
method=HttpMethod.POST,
request_model=Veo2GenVidPollRequest,
response_model=Veo2GenVidPollResponse
),
completed_statuses=["completed"],
failed_statuses=[], # No failed statuses, we'll handle errors after polling
status_extractor=status_extractor,
progress_extractor=progress_extractor,
request=Veo2GenVidPollRequest(
operationName=operation_name
),
auth_kwargs=kwargs,
poll_interval=5.0,
result_url_extractor=get_video_url_from_response,
node_id=unique_id,
estimated_duration=AVERAGE_DURATION_VIDEO_GEN,
)
# Execute the polling operation
poll_response = poll_operation.execute()
# Now check for errors in the final response
# Check for error in poll response
if hasattr(poll_response, 'error') and poll_response.error:
error_message = f"Veo API error: {poll_response.error.message} (code: {poll_response.error.code})"
logging.error(error_message)
raise Exception(error_message)
# Check for RAI filtered content
if (hasattr(poll_response.response, 'raiMediaFilteredCount') and
poll_response.response.raiMediaFilteredCount > 0):
# Extract reason message if available
if (hasattr(poll_response.response, 'raiMediaFilteredReasons') and
poll_response.response.raiMediaFilteredReasons):
reason = poll_response.response.raiMediaFilteredReasons[0]
error_message = f"Content filtered by Google's Responsible AI practices: {reason} ({poll_response.response.raiMediaFilteredCount} videos filtered.)"
else:
error_message = f"Content filtered by Google's Responsible AI practices ({poll_response.response.raiMediaFilteredCount} videos filtered.)"
logging.error(error_message)
raise Exception(error_message)
# Extract video data
video_data = None
if poll_response.response and hasattr(poll_response.response, 'videos') and poll_response.response.videos and len(poll_response.response.videos) > 0:
video = poll_response.response.videos[0]
# Check if video is provided as base64 or URL
if hasattr(video, 'bytesBase64Encoded') and video.bytesBase64Encoded:
# Decode base64 string to bytes
video_data = base64.b64decode(video.bytesBase64Encoded)
elif hasattr(video, 'gcsUri') and video.gcsUri:
# Download from URL
video_url = video.gcsUri
video_response = requests.get(video_url)
video_data = video_response.content
else:
raise Exception("Video returned but no data or URL was provided")
else:
raise Exception("Video generation completed but no video was returned")
if not video_data:
raise Exception("No video data was returned")
logging.info("Video generation completed successfully")
# Convert video data to BytesIO object
video_io = io.BytesIO(video_data)
# Return VideoFromFile object
return (VideoFromFile(video_io),)
# Register the node
NODE_CLASS_MAPPINGS = {
"VeoVideoGenerationNode": VeoVideoGenerationNode,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"VeoVideoGenerationNode": "Google Veo Video Generation",
}