147 lines
5.2 KiB
Python

from __future__ import annotations
from abc import ABC, abstractmethod
from comfy_api.v3.io import Image, Mask, FolderType, _UIOutput, ComfyNodeV3
# used for image preview
from comfy.cli_args import args
import folder_paths
import random
from PIL import Image as PILImage
from PIL.PngImagePlugin import PngInfo
import os
import json
import numpy as np
class SavedResult:
def __init__(self, filename: str, subfolder: str, type: FolderType):
self.filename = filename
self.subfolder = subfolder
self.type = type
def as_dict(self):
return {
"filename": self.filename,
"subfolder": self.subfolder,
"type": self.type
}
class PreviewImage(_UIOutput):
def __init__(self, image: Image.Type, animated: bool=False, node: ComfyNodeV3=None, **kwargs):
output_dir = folder_paths.get_temp_directory()
type = "temp"
prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
compress_level = 1
filename_prefix = "ComfyUI"
filename_prefix += prefix_append
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, output_dir, image[0].shape[1], image[0].shape[0])
results = list()
for (batch_number, image) in enumerate(image):
i = 255. * image.cpu().numpy()
img = PILImage.fromarray(np.clip(i, 0, 255).astype(np.uint8))
metadata = None
if not args.disable_metadata and node is not None:
metadata = PngInfo()
if node.hidden.prompt is not None:
metadata.add_text("prompt", json.dumps(node.hidden.prompt))
if node.hidden.extra_pnginfo is not None:
for x in node.hidden.extra_pnginfo:
metadata.add_text(x, json.dumps(node.hidden.extra_pnginfo[x]))
filename_with_batch_num = filename.replace("%batch_num%", str(batch_number))
file = f"{filename_with_batch_num}_{counter:05}_.png"
img.save(os.path.join(full_output_folder, file), pnginfo=metadata, compress_level=compress_level)
results.append(SavedResult(file, subfolder, type))
counter += 1
self.values = results
self.animated = animated
def as_dict(self):
values = [x.as_dict() if isinstance(x, SavedResult) else x for x in self.values]
return {
"images": values,
"animated": (self.animated,)
}
class PreviewMask(PreviewImage):
def __init__(self, mask: PreviewMask.Type, animated: bool=False, node: ComfyNodeV3=None, **kwargs):
preview = mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])).movedim(1, -1).expand(-1, -1, -1, 3)
super().__init__(preview, animated, node, **kwargs)
# class UILatent(_UIOutput):
# def __init__(self, values: list[SavedResult | dict], **kwargs):
# output_dir = folder_paths.get_temp_directory()
# type = "temp"
# prefix_append = "_temp_" + ''.join(random.choice("abcdefghijklmnopqrstupvxyz") for x in range(5))
# compress_level = 1
# filename_prefix = "ComfyUI"
# full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(filename_prefix, self.output_dir)
# # support save metadata for latent sharing
# prompt_info = ""
# if prompt is not None:
# prompt_info = json.dumps(prompt)
# metadata = None
# if not args.disable_metadata:
# metadata = {"prompt": prompt_info}
# if extra_pnginfo is not None:
# for x in extra_pnginfo:
# metadata[x] = json.dumps(extra_pnginfo[x])
# file = f"{filename}_{counter:05}_.latent"
# results: list[FileLocator] = []
# results.append({
# "filename": file,
# "subfolder": subfolder,
# "type": "output"
# })
# file = os.path.join(full_output_folder, file)
# output = {}
# output["latent_tensor"] = samples["samples"].contiguous()
# output["latent_format_version_0"] = torch.tensor([])
# comfy.utils.save_torch_file(output, file, metadata=metadata)
# self.values = values
# def as_dict(self):
# values = [x.as_dict() if isinstance(x, SavedResult) else x for x in self.values]
# return {
# "latents": values,
# }
class PreviewAudio(_UIOutput):
def __init__(self, values: list[SavedResult | dict], **kwargs):
self.values = values
def as_dict(self):
values = [x.as_dict() if isinstance(x, SavedResult) else x for x in self.values]
return {
"audio": values,
}
class PreviewUI3D(_UIOutput):
def __init__(self, values: list[SavedResult | dict], **kwargs):
self.values = values
def as_dict(self):
values = [x.as_dict() if isinstance(x, SavedResult) else x for x in self.values]
return {
"3d": values,
}
class PreviewText(_UIOutput):
def __init__(self, value: str, **kwargs):
self.value = value
def as_dict(self):
return {"text": (self.value,)}