mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-07-27 16:26:39 +00:00
71 lines
2.4 KiB
Python
71 lines
2.4 KiB
Python
"""TCFG: Tangential Damping Classifier-free Guidance - (arXiv: https://arxiv.org/abs/2503.18137)"""
|
||
|
||
from __future__ import annotations
|
||
|
||
import torch
|
||
|
||
from comfy_api.latest import io
|
||
|
||
|
||
def score_tangential_damping(cond_score: torch.Tensor, uncond_score: torch.Tensor) -> torch.Tensor:
|
||
"""Drop tangential components from uncond score to align with cond score."""
|
||
# (B, 1, ...)
|
||
batch_num = cond_score.shape[0]
|
||
cond_score_flat = cond_score.reshape(batch_num, 1, -1).float()
|
||
uncond_score_flat = uncond_score.reshape(batch_num, 1, -1).float()
|
||
|
||
# Score matrix A (B, 2, ...)
|
||
score_matrix = torch.cat((uncond_score_flat, cond_score_flat), dim=1)
|
||
try:
|
||
_, _, Vh = torch.linalg.svd(score_matrix, full_matrices=False)
|
||
except RuntimeError:
|
||
# Fallback to CPU
|
||
_, _, Vh = torch.linalg.svd(score_matrix.cpu(), full_matrices=False)
|
||
|
||
# Drop the tangential components
|
||
v1 = Vh[:, 0:1, :].to(uncond_score_flat.device) # (B, 1, ...)
|
||
uncond_score_td = (uncond_score_flat @ v1.transpose(-2, -1)) * v1
|
||
return uncond_score_td.reshape_as(uncond_score).to(uncond_score.dtype)
|
||
|
||
|
||
class TCFG(io.ComfyNode):
|
||
@classmethod
|
||
def define_schema(cls):
|
||
return io.Schema(
|
||
node_id="TCFG_V3",
|
||
display_name="Tangential Damping CFG _V3",
|
||
category="advanced/guidance",
|
||
description="TCFG – Tangential Damping CFG (2503.18137)\n\nRefine the uncond (negative) to align with the cond (positive) for improving quality.",
|
||
inputs=[
|
||
io.Model.Input("model"),
|
||
],
|
||
outputs=[
|
||
io.Model.Output(display_name="patched_model"),
|
||
],
|
||
)
|
||
|
||
@classmethod
|
||
def execute(cls, model):
|
||
m = model.clone()
|
||
|
||
def tangential_damping_cfg(args):
|
||
# Assume [cond, uncond, ...]
|
||
x = args["input"]
|
||
conds_out = args["conds_out"]
|
||
if len(conds_out) <= 1 or None in args["conds"][:2]:
|
||
# Skip when either cond or uncond is None
|
||
return conds_out
|
||
cond_pred = conds_out[0]
|
||
uncond_pred = conds_out[1]
|
||
uncond_td = score_tangential_damping(x - cond_pred, x - uncond_pred)
|
||
uncond_pred_td = x - uncond_td
|
||
return [cond_pred, uncond_pred_td] + conds_out[2:]
|
||
|
||
m.set_model_sampler_pre_cfg_function(tangential_damping_cfg)
|
||
return io.NodeOutput(m)
|
||
|
||
|
||
NODES_LIST = [
|
||
TCFG,
|
||
]
|