mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-09-10 11:35:40 +00:00
* Update default parameters for Moonvalley video nodes - Changed default negative prompts to a more extensive list for both BaseMoonvalleyVideoNode and MoonvalleyVideo2VideoNode. - Updated default guidance scale values for both nodes to enhance prompt adherence. - Set a fixed default seed value for consistency in video generation. * no message * ruff fix --------- Co-authored-by: thorsten <thorsten@tripod-digital.co.nz>
798 lines
28 KiB
Python
798 lines
28 KiB
Python
import logging
|
|
from typing import Any, Callable, Optional, TypeVar
|
|
import torch
|
|
from comfy_api_nodes.util.validation_utils import (
|
|
get_image_dimensions,
|
|
validate_image_dimensions,
|
|
)
|
|
|
|
|
|
from comfy_api_nodes.apis import (
|
|
MoonvalleyTextToVideoRequest,
|
|
MoonvalleyTextToVideoInferenceParams,
|
|
MoonvalleyVideoToVideoInferenceParams,
|
|
MoonvalleyVideoToVideoRequest,
|
|
MoonvalleyPromptResponse,
|
|
)
|
|
from comfy_api_nodes.apis.client import (
|
|
ApiEndpoint,
|
|
HttpMethod,
|
|
SynchronousOperation,
|
|
PollingOperation,
|
|
EmptyRequest,
|
|
)
|
|
from comfy_api_nodes.apinode_utils import (
|
|
download_url_to_video_output,
|
|
upload_images_to_comfyapi,
|
|
upload_video_to_comfyapi,
|
|
)
|
|
from comfy_api_nodes.mapper_utils import model_field_to_node_input
|
|
|
|
from comfy_api.input.video_types import VideoInput
|
|
from comfy.comfy_types.node_typing import IO
|
|
from comfy_api.input_impl import VideoFromFile
|
|
import av
|
|
import io
|
|
|
|
API_UPLOADS_ENDPOINT = "/proxy/moonvalley/uploads"
|
|
API_PROMPTS_ENDPOINT = "/proxy/moonvalley/prompts"
|
|
API_VIDEO2VIDEO_ENDPOINT = "/proxy/moonvalley/prompts/video-to-video"
|
|
API_TXT2VIDEO_ENDPOINT = "/proxy/moonvalley/prompts/text-to-video"
|
|
API_IMG2VIDEO_ENDPOINT = "/proxy/moonvalley/prompts/image-to-video"
|
|
|
|
MIN_WIDTH = 300
|
|
MIN_HEIGHT = 300
|
|
|
|
MAX_WIDTH = 10000
|
|
MAX_HEIGHT = 10000
|
|
|
|
MIN_VID_WIDTH = 300
|
|
MIN_VID_HEIGHT = 300
|
|
|
|
MAX_VID_WIDTH = 10000
|
|
MAX_VID_HEIGHT = 10000
|
|
|
|
MAX_VIDEO_SIZE = 1024 * 1024 * 1024 # 1 GB max for in-memory video processing
|
|
|
|
MOONVALLEY_MAREY_MAX_PROMPT_LENGTH = 5000
|
|
R = TypeVar("R")
|
|
|
|
|
|
class MoonvalleyApiError(Exception):
|
|
"""Base exception for Moonvalley API errors."""
|
|
|
|
pass
|
|
|
|
|
|
def is_valid_task_creation_response(response: MoonvalleyPromptResponse) -> bool:
|
|
"""Verifies that the initial response contains a task ID."""
|
|
return bool(response.id)
|
|
|
|
|
|
def validate_task_creation_response(response) -> None:
|
|
if not is_valid_task_creation_response(response):
|
|
error_msg = f"Moonvalley Marey API: Initial request failed. Code: {response.code}, Message: {response.message}, Data: {response}"
|
|
logging.error(error_msg)
|
|
raise MoonvalleyApiError(error_msg)
|
|
|
|
|
|
def get_video_from_response(response):
|
|
video = response.output_url
|
|
logging.info(
|
|
"Moonvalley Marey API: Task %s succeeded. Video URL: %s", response.id, video
|
|
)
|
|
return video
|
|
|
|
|
|
def get_video_url_from_response(response) -> Optional[str]:
|
|
"""Returns the first video url from the Moonvalley video generation task result.
|
|
Will not raise an error if the response is not valid.
|
|
"""
|
|
if response:
|
|
return str(get_video_from_response(response))
|
|
else:
|
|
return None
|
|
|
|
|
|
async def poll_until_finished(
|
|
auth_kwargs: dict[str, str],
|
|
api_endpoint: ApiEndpoint[Any, R],
|
|
result_url_extractor: Optional[Callable[[R], str]] = None,
|
|
node_id: Optional[str] = None,
|
|
) -> R:
|
|
"""Polls the Moonvalley API endpoint until the task reaches a terminal state, then returns the response."""
|
|
return await PollingOperation(
|
|
poll_endpoint=api_endpoint,
|
|
completed_statuses=[
|
|
"completed",
|
|
],
|
|
max_poll_attempts=240, # 64 minutes with 16s interval
|
|
poll_interval=16.0,
|
|
failed_statuses=["error"],
|
|
status_extractor=lambda response: (
|
|
response.status if response and response.status else None
|
|
),
|
|
auth_kwargs=auth_kwargs,
|
|
result_url_extractor=result_url_extractor,
|
|
node_id=node_id,
|
|
).execute()
|
|
|
|
|
|
def validate_prompts(
|
|
prompt: str, negative_prompt: str, max_length=MOONVALLEY_MAREY_MAX_PROMPT_LENGTH
|
|
):
|
|
"""Verifies that the prompt isn't empty and that neither prompt is too long."""
|
|
if not prompt:
|
|
raise ValueError("Positive prompt is empty")
|
|
if len(prompt) > max_length:
|
|
raise ValueError(f"Positive prompt is too long: {len(prompt)} characters")
|
|
if negative_prompt and len(negative_prompt) > max_length:
|
|
raise ValueError(
|
|
f"Negative prompt is too long: {len(negative_prompt)} characters"
|
|
)
|
|
return True
|
|
|
|
|
|
def validate_input_media(width, height, with_frame_conditioning, num_frames_in=None):
|
|
# inference validation
|
|
# T = num_frames
|
|
# in all cases, the following must be true: T divisible by 16 and H,W by 8. in addition...
|
|
# with image conditioning: H*W must be divisible by 8192
|
|
# without image conditioning: T divisible by 32
|
|
if num_frames_in and not num_frames_in % 16 == 0:
|
|
return False, ("The input video total frame count must be divisible by 16!")
|
|
|
|
if height % 8 != 0 or width % 8 != 0:
|
|
return False, (
|
|
f"Height ({height}) and width ({width}) must be " "divisible by 8"
|
|
)
|
|
|
|
if with_frame_conditioning:
|
|
if (height * width) % 8192 != 0:
|
|
return False, (
|
|
f"Height * width ({height * width}) must be "
|
|
"divisible by 8192 for frame conditioning"
|
|
)
|
|
else:
|
|
if num_frames_in and not num_frames_in % 32 == 0:
|
|
return False, ("The input video total frame count must be divisible by 32!")
|
|
|
|
|
|
def validate_input_image(
|
|
image: torch.Tensor, with_frame_conditioning: bool = False
|
|
) -> None:
|
|
"""
|
|
Validates the input image adheres to the expectations of the API:
|
|
- The image resolution should not be less than 300*300px
|
|
- The aspect ratio of the image should be between 1:2.5 ~ 2.5:1
|
|
|
|
"""
|
|
height, width = get_image_dimensions(image)
|
|
validate_input_media(width, height, with_frame_conditioning)
|
|
validate_image_dimensions(
|
|
image, min_width=300, min_height=300, max_height=MAX_HEIGHT, max_width=MAX_WIDTH
|
|
)
|
|
|
|
|
|
def validate_video_to_video_input(video: VideoInput) -> VideoInput:
|
|
"""
|
|
Validates and processes video input for Moonvalley Video-to-Video generation.
|
|
|
|
Args:
|
|
video: Input video to validate
|
|
|
|
Returns:
|
|
Validated and potentially trimmed video
|
|
|
|
Raises:
|
|
ValueError: If video doesn't meet requirements
|
|
MoonvalleyApiError: If video duration is too short
|
|
"""
|
|
width, height = _get_video_dimensions(video)
|
|
_validate_video_dimensions(width, height)
|
|
_validate_container_format(video)
|
|
|
|
return _validate_and_trim_duration(video)
|
|
|
|
|
|
def _get_video_dimensions(video: VideoInput) -> tuple[int, int]:
|
|
"""Extracts video dimensions with error handling."""
|
|
try:
|
|
return video.get_dimensions()
|
|
except Exception as e:
|
|
logging.error("Error getting dimensions of video: %s", e)
|
|
raise ValueError(f"Cannot get video dimensions: {e}") from e
|
|
|
|
|
|
def _validate_video_dimensions(width: int, height: int) -> None:
|
|
"""Validates video dimensions meet Moonvalley V2V requirements."""
|
|
supported_resolutions = {
|
|
(1920, 1080),
|
|
(1080, 1920),
|
|
(1152, 1152),
|
|
(1536, 1152),
|
|
(1152, 1536),
|
|
}
|
|
|
|
if (width, height) not in supported_resolutions:
|
|
supported_list = ", ".join(
|
|
[f"{w}x{h}" for w, h in sorted(supported_resolutions)]
|
|
)
|
|
raise ValueError(
|
|
f"Resolution {width}x{height} not supported. Supported: {supported_list}"
|
|
)
|
|
|
|
|
|
def _validate_container_format(video: VideoInput) -> None:
|
|
"""Validates video container format is MP4."""
|
|
container_format = video.get_container_format()
|
|
if container_format not in ["mp4", "mov,mp4,m4a,3gp,3g2,mj2"]:
|
|
raise ValueError(
|
|
f"Only MP4 container format supported. Got: {container_format}"
|
|
)
|
|
|
|
|
|
def _validate_and_trim_duration(video: VideoInput) -> VideoInput:
|
|
"""Validates video duration and trims to 5 seconds if needed."""
|
|
duration = video.get_duration()
|
|
_validate_minimum_duration(duration)
|
|
return _trim_if_too_long(video, duration)
|
|
|
|
|
|
def _validate_minimum_duration(duration: float) -> None:
|
|
"""Ensures video is at least 5 seconds long."""
|
|
if duration < 5:
|
|
raise MoonvalleyApiError("Input video must be at least 5 seconds long.")
|
|
|
|
|
|
def _trim_if_too_long(video: VideoInput, duration: float) -> VideoInput:
|
|
"""Trims video to 5 seconds if longer."""
|
|
if duration > 5:
|
|
return trim_video(video, 5)
|
|
return video
|
|
|
|
|
|
def trim_video(video: VideoInput, duration_sec: float) -> VideoInput:
|
|
"""
|
|
Returns a new VideoInput object trimmed from the beginning to the specified duration,
|
|
using av to avoid loading entire video into memory.
|
|
|
|
Args:
|
|
video: Input video to trim
|
|
duration_sec: Duration in seconds to keep from the beginning
|
|
|
|
Returns:
|
|
VideoFromFile object that owns the output buffer
|
|
"""
|
|
output_buffer = io.BytesIO()
|
|
|
|
input_container = None
|
|
output_container = None
|
|
|
|
try:
|
|
# Get the stream source - this avoids loading entire video into memory
|
|
# when the source is already a file path
|
|
input_source = video.get_stream_source()
|
|
|
|
# Open containers
|
|
input_container = av.open(input_source, mode="r")
|
|
output_container = av.open(output_buffer, mode="w", format="mp4")
|
|
|
|
# Set up output streams for re-encoding
|
|
video_stream = None
|
|
audio_stream = None
|
|
|
|
for stream in input_container.streams:
|
|
logging.info(f"Found stream: type={stream.type}, class={type(stream)}")
|
|
if isinstance(stream, av.VideoStream):
|
|
# Create output video stream with same parameters
|
|
video_stream = output_container.add_stream(
|
|
"h264", rate=stream.average_rate
|
|
)
|
|
video_stream.width = stream.width
|
|
video_stream.height = stream.height
|
|
video_stream.pix_fmt = "yuv420p"
|
|
logging.info(
|
|
f"Added video stream: {stream.width}x{stream.height} @ {stream.average_rate}fps"
|
|
)
|
|
elif isinstance(stream, av.AudioStream):
|
|
# Create output audio stream with same parameters
|
|
audio_stream = output_container.add_stream(
|
|
"aac", rate=stream.sample_rate
|
|
)
|
|
audio_stream.sample_rate = stream.sample_rate
|
|
audio_stream.layout = stream.layout
|
|
logging.info(
|
|
f"Added audio stream: {stream.sample_rate}Hz, {stream.channels} channels"
|
|
)
|
|
|
|
# Calculate target frame count that's divisible by 16
|
|
fps = input_container.streams.video[0].average_rate
|
|
estimated_frames = int(duration_sec * fps)
|
|
target_frames = (
|
|
estimated_frames // 16
|
|
) * 16 # Round down to nearest multiple of 16
|
|
|
|
if target_frames == 0:
|
|
raise ValueError("Video too short: need at least 16 frames for Moonvalley")
|
|
|
|
frame_count = 0
|
|
audio_frame_count = 0
|
|
|
|
# Decode and re-encode video frames
|
|
if video_stream:
|
|
for frame in input_container.decode(video=0):
|
|
if frame_count >= target_frames:
|
|
break
|
|
|
|
# Re-encode frame
|
|
for packet in video_stream.encode(frame):
|
|
output_container.mux(packet)
|
|
frame_count += 1
|
|
|
|
# Flush encoder
|
|
for packet in video_stream.encode():
|
|
output_container.mux(packet)
|
|
|
|
logging.info(
|
|
f"Encoded {frame_count} video frames (target: {target_frames})"
|
|
)
|
|
|
|
# Decode and re-encode audio frames
|
|
if audio_stream:
|
|
input_container.seek(0) # Reset to beginning for audio
|
|
for frame in input_container.decode(audio=0):
|
|
if frame.time >= duration_sec:
|
|
break
|
|
|
|
# Re-encode frame
|
|
for packet in audio_stream.encode(frame):
|
|
output_container.mux(packet)
|
|
audio_frame_count += 1
|
|
|
|
# Flush encoder
|
|
for packet in audio_stream.encode():
|
|
output_container.mux(packet)
|
|
|
|
logging.info(f"Encoded {audio_frame_count} audio frames")
|
|
|
|
# Close containers
|
|
output_container.close()
|
|
input_container.close()
|
|
|
|
# Return as VideoFromFile using the buffer
|
|
output_buffer.seek(0)
|
|
return VideoFromFile(output_buffer)
|
|
|
|
except Exception as e:
|
|
# Clean up on error
|
|
if input_container is not None:
|
|
input_container.close()
|
|
if output_container is not None:
|
|
output_container.close()
|
|
raise RuntimeError(f"Failed to trim video: {str(e)}") from e
|
|
|
|
|
|
# --- BaseMoonvalleyVideoNode ---
|
|
class BaseMoonvalleyVideoNode:
|
|
def parseWidthHeightFromRes(self, resolution: str):
|
|
# Accepts a string like "16:9 (1920 x 1080)" and returns width, height as a dict
|
|
res_map = {
|
|
"16:9 (1920 x 1080)": {"width": 1920, "height": 1080},
|
|
"9:16 (1080 x 1920)": {"width": 1080, "height": 1920},
|
|
"1:1 (1152 x 1152)": {"width": 1152, "height": 1152},
|
|
"4:3 (1536 x 1152)": {"width": 1536, "height": 1152},
|
|
"3:4 (1152 x 1536)": {"width": 1152, "height": 1536},
|
|
"21:9 (2560 x 1080)": {"width": 2560, "height": 1080},
|
|
}
|
|
if resolution in res_map:
|
|
return res_map[resolution]
|
|
else:
|
|
# Default to 1920x1080 if unknown
|
|
return {"width": 1920, "height": 1080}
|
|
|
|
def parseControlParameter(self, value):
|
|
control_map = {
|
|
"Motion Transfer": "motion_control",
|
|
"Canny": "canny_control",
|
|
"Pose Transfer": "pose_control",
|
|
"Depth": "depth_control",
|
|
}
|
|
if value in control_map:
|
|
return control_map[value]
|
|
else:
|
|
return control_map["Motion Transfer"]
|
|
|
|
async def get_response(
|
|
self, task_id: str, auth_kwargs: dict[str, str], node_id: Optional[str] = None
|
|
) -> MoonvalleyPromptResponse:
|
|
return await poll_until_finished(
|
|
auth_kwargs,
|
|
ApiEndpoint(
|
|
path=f"{API_PROMPTS_ENDPOINT}/{task_id}",
|
|
method=HttpMethod.GET,
|
|
request_model=EmptyRequest,
|
|
response_model=MoonvalleyPromptResponse,
|
|
),
|
|
result_url_extractor=get_video_url_from_response,
|
|
node_id=node_id,
|
|
)
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"prompt": model_field_to_node_input(
|
|
IO.STRING,
|
|
MoonvalleyTextToVideoRequest,
|
|
"prompt_text",
|
|
multiline=True,
|
|
),
|
|
"negative_prompt": model_field_to_node_input(
|
|
IO.STRING,
|
|
MoonvalleyTextToVideoInferenceParams,
|
|
"negative_prompt",
|
|
multiline=True,
|
|
default="<synthetic> <scene cut> gopro, bright, contrast, static, overexposed, vignette, artifacts, still, noise, texture, scanlines, videogame, 360 camera, VR, transition, flare, saturation, distorted, warped, wide angle, saturated, vibrant, glowing, cross dissolve, cheesy, ugly hands, mutated hands, mutant, disfigured, extra fingers, blown out, horrible, blurry, worst quality, bad, dissolve, melt, fade in, fade out, wobbly, weird, low quality, plastic, stock footage, video camera, boring",
|
|
),
|
|
"resolution": (
|
|
IO.COMBO,
|
|
{
|
|
"options": [
|
|
"16:9 (1920 x 1080)",
|
|
"9:16 (1080 x 1920)",
|
|
"1:1 (1152 x 1152)",
|
|
"4:3 (1440 x 1080)",
|
|
"3:4 (1080 x 1440)",
|
|
"21:9 (2560 x 1080)",
|
|
],
|
|
"default": "16:9 (1920 x 1080)",
|
|
"tooltip": "Resolution of the output video",
|
|
},
|
|
),
|
|
"prompt_adherence": model_field_to_node_input(
|
|
IO.FLOAT,
|
|
MoonvalleyTextToVideoInferenceParams,
|
|
"guidance_scale",
|
|
default=10.0,
|
|
step=1,
|
|
min=1,
|
|
max=20,
|
|
),
|
|
"seed": model_field_to_node_input(
|
|
IO.INT,
|
|
MoonvalleyTextToVideoInferenceParams,
|
|
"seed",
|
|
default=9,
|
|
min=0,
|
|
max=4294967295,
|
|
step=1,
|
|
display="number",
|
|
tooltip="Random seed value",
|
|
),
|
|
"steps": model_field_to_node_input(
|
|
IO.INT,
|
|
MoonvalleyTextToVideoInferenceParams,
|
|
"steps",
|
|
default=100,
|
|
min=1,
|
|
max=100,
|
|
),
|
|
},
|
|
"hidden": {
|
|
"auth_token": "AUTH_TOKEN_COMFY_ORG",
|
|
"comfy_api_key": "API_KEY_COMFY_ORG",
|
|
"unique_id": "UNIQUE_ID",
|
|
},
|
|
"optional": {
|
|
"image": model_field_to_node_input(
|
|
IO.IMAGE,
|
|
MoonvalleyTextToVideoRequest,
|
|
"image_url",
|
|
tooltip="The reference image used to generate the video",
|
|
),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("STRING",)
|
|
FUNCTION = "generate"
|
|
CATEGORY = "api node/video/Moonvalley Marey"
|
|
API_NODE = True
|
|
|
|
def generate(self, **kwargs):
|
|
return None
|
|
|
|
|
|
# --- MoonvalleyImg2VideoNode ---
|
|
class MoonvalleyImg2VideoNode(BaseMoonvalleyVideoNode):
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return super().INPUT_TYPES()
|
|
|
|
RETURN_TYPES = ("VIDEO",)
|
|
RETURN_NAMES = ("video",)
|
|
DESCRIPTION = "Moonvalley Marey Image to Video Node"
|
|
|
|
async def generate(
|
|
self, prompt, negative_prompt, unique_id: Optional[str] = None, **kwargs
|
|
):
|
|
image = kwargs.get("image", None)
|
|
if image is None:
|
|
raise MoonvalleyApiError("image is required")
|
|
|
|
validate_input_image(image, True)
|
|
validate_prompts(prompt, negative_prompt, MOONVALLEY_MAREY_MAX_PROMPT_LENGTH)
|
|
width_height = self.parseWidthHeightFromRes(kwargs.get("resolution"))
|
|
|
|
inference_params = MoonvalleyTextToVideoInferenceParams(
|
|
negative_prompt=negative_prompt,
|
|
steps=kwargs.get("steps"),
|
|
seed=kwargs.get("seed"),
|
|
guidance_scale=kwargs.get("prompt_adherence"),
|
|
num_frames=128,
|
|
width=width_height.get("width"),
|
|
height=width_height.get("height"),
|
|
use_negative_prompts=True,
|
|
)
|
|
"""Upload image to comfy backend to have a URL available for further processing"""
|
|
# Get MIME type from tensor - assuming PNG format for image tensors
|
|
mime_type = "image/png"
|
|
|
|
image_url = (
|
|
await upload_images_to_comfyapi(
|
|
image, max_images=1, auth_kwargs=kwargs, mime_type=mime_type
|
|
)
|
|
)[0]
|
|
|
|
request = MoonvalleyTextToVideoRequest(
|
|
image_url=image_url, prompt_text=prompt, inference_params=inference_params
|
|
)
|
|
initial_operation = SynchronousOperation(
|
|
endpoint=ApiEndpoint(
|
|
path=API_IMG2VIDEO_ENDPOINT,
|
|
method=HttpMethod.POST,
|
|
request_model=MoonvalleyTextToVideoRequest,
|
|
response_model=MoonvalleyPromptResponse,
|
|
),
|
|
request=request,
|
|
auth_kwargs=kwargs,
|
|
)
|
|
task_creation_response = await initial_operation.execute()
|
|
validate_task_creation_response(task_creation_response)
|
|
task_id = task_creation_response.id
|
|
|
|
final_response = await self.get_response(
|
|
task_id, auth_kwargs=kwargs, node_id=unique_id
|
|
)
|
|
video = await download_url_to_video_output(final_response.output_url)
|
|
return (video,)
|
|
|
|
|
|
# --- MoonvalleyVid2VidNode ---
|
|
class MoonvalleyVideo2VideoNode(BaseMoonvalleyVideoNode):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
return {
|
|
"required": {
|
|
"prompt": model_field_to_node_input(
|
|
IO.STRING,
|
|
MoonvalleyVideoToVideoRequest,
|
|
"prompt_text",
|
|
multiline=True,
|
|
),
|
|
"negative_prompt": model_field_to_node_input(
|
|
IO.STRING,
|
|
MoonvalleyVideoToVideoInferenceParams,
|
|
"negative_prompt",
|
|
multiline=True,
|
|
default="<synthetic> <scene cut> gopro, bright, contrast, static, overexposed, vignette, artifacts, still, noise, texture, scanlines, videogame, 360 camera, VR, transition, flare, saturation, distorted, warped, wide angle, saturated, vibrant, glowing, cross dissolve, cheesy, ugly hands, mutated hands, mutant, disfigured, extra fingers, blown out, horrible, blurry, worst quality, bad, dissolve, melt, fade in, fade out, wobbly, weird, low quality, plastic, stock footage, video camera, boring",
|
|
),
|
|
"seed": model_field_to_node_input(
|
|
IO.INT,
|
|
MoonvalleyVideoToVideoInferenceParams,
|
|
"seed",
|
|
default=9,
|
|
min=0,
|
|
max=4294967295,
|
|
step=1,
|
|
display="number",
|
|
tooltip="Random seed value",
|
|
control_after_generate=False,
|
|
),
|
|
"prompt_adherence": model_field_to_node_input(
|
|
IO.FLOAT,
|
|
MoonvalleyVideoToVideoInferenceParams,
|
|
"guidance_scale",
|
|
default=10.0,
|
|
step=1,
|
|
min=1,
|
|
max=20,
|
|
),
|
|
},
|
|
"hidden": {
|
|
"auth_token": "AUTH_TOKEN_COMFY_ORG",
|
|
"comfy_api_key": "API_KEY_COMFY_ORG",
|
|
"unique_id": "UNIQUE_ID",
|
|
},
|
|
"optional": {
|
|
"video": (
|
|
IO.VIDEO,
|
|
{
|
|
"default": "",
|
|
"multiline": False,
|
|
"tooltip": "The reference video used to generate the output video. Must be at least 5 seconds long. Videos longer than 5s will be automatically trimmed. Only MP4 format supported.",
|
|
},
|
|
),
|
|
"control_type": (
|
|
["Motion Transfer", "Pose Transfer"],
|
|
{"default": "Motion Transfer"},
|
|
),
|
|
"motion_intensity": (
|
|
"INT",
|
|
{
|
|
"default": 100,
|
|
"step": 1,
|
|
"min": 0,
|
|
"max": 100,
|
|
"tooltip": "Only used if control_type is 'Motion Transfer'",
|
|
},
|
|
),
|
|
"image": model_field_to_node_input(
|
|
IO.IMAGE,
|
|
MoonvalleyTextToVideoRequest,
|
|
"image_url",
|
|
tooltip="The reference image used to generate the video",
|
|
),
|
|
},
|
|
}
|
|
|
|
RETURN_TYPES = ("VIDEO",)
|
|
RETURN_NAMES = ("video",)
|
|
|
|
async def generate(
|
|
self, prompt, negative_prompt, unique_id: Optional[str] = None, **kwargs
|
|
):
|
|
video = kwargs.get("video")
|
|
image = kwargs.get("image", None)
|
|
|
|
if not video:
|
|
raise MoonvalleyApiError("video is required")
|
|
|
|
video_url = ""
|
|
if video:
|
|
validated_video = validate_video_to_video_input(video)
|
|
video_url = await upload_video_to_comfyapi(
|
|
validated_video, auth_kwargs=kwargs
|
|
)
|
|
mime_type = "image/png"
|
|
|
|
if not image is None:
|
|
validate_input_image(image, with_frame_conditioning=True)
|
|
image_url = await upload_images_to_comfyapi(
|
|
image=image, auth_kwargs=kwargs, max_images=1, mime_type=mime_type
|
|
)
|
|
control_type = kwargs.get("control_type")
|
|
motion_intensity = kwargs.get("motion_intensity")
|
|
|
|
"""Validate prompts and inference input"""
|
|
validate_prompts(prompt, negative_prompt)
|
|
|
|
# Only include motion_intensity for Motion Transfer
|
|
control_params = {}
|
|
if control_type == "Motion Transfer" and motion_intensity is not None:
|
|
control_params["motion_intensity"] = motion_intensity
|
|
|
|
inference_params = MoonvalleyVideoToVideoInferenceParams(
|
|
negative_prompt=negative_prompt,
|
|
seed=kwargs.get("seed"),
|
|
control_params=control_params,
|
|
)
|
|
|
|
control = self.parseControlParameter(control_type)
|
|
|
|
request = MoonvalleyVideoToVideoRequest(
|
|
control_type=control,
|
|
video_url=video_url,
|
|
prompt_text=prompt,
|
|
inference_params=inference_params,
|
|
)
|
|
request.image_url = image_url if not image is None else None
|
|
|
|
initial_operation = SynchronousOperation(
|
|
endpoint=ApiEndpoint(
|
|
path=API_VIDEO2VIDEO_ENDPOINT,
|
|
method=HttpMethod.POST,
|
|
request_model=MoonvalleyVideoToVideoRequest,
|
|
response_model=MoonvalleyPromptResponse,
|
|
),
|
|
request=request,
|
|
auth_kwargs=kwargs,
|
|
)
|
|
task_creation_response = await initial_operation.execute()
|
|
validate_task_creation_response(task_creation_response)
|
|
task_id = task_creation_response.id
|
|
|
|
final_response = await self.get_response(
|
|
task_id, auth_kwargs=kwargs, node_id=unique_id
|
|
)
|
|
|
|
video = await download_url_to_video_output(final_response.output_url)
|
|
|
|
return (video,)
|
|
|
|
|
|
# --- MoonvalleyTxt2VideoNode ---
|
|
class MoonvalleyTxt2VideoNode(BaseMoonvalleyVideoNode):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
RETURN_TYPES = ("VIDEO",)
|
|
RETURN_NAMES = ("video",)
|
|
|
|
@classmethod
|
|
def INPUT_TYPES(cls):
|
|
input_types = super().INPUT_TYPES()
|
|
# Remove image-specific parameters
|
|
for param in ["image"]:
|
|
if param in input_types["optional"]:
|
|
del input_types["optional"][param]
|
|
return input_types
|
|
|
|
async def generate(
|
|
self, prompt, negative_prompt, unique_id: Optional[str] = None, **kwargs
|
|
):
|
|
validate_prompts(prompt, negative_prompt, MOONVALLEY_MAREY_MAX_PROMPT_LENGTH)
|
|
width_height = self.parseWidthHeightFromRes(kwargs.get("resolution"))
|
|
|
|
inference_params = MoonvalleyTextToVideoInferenceParams(
|
|
negative_prompt=negative_prompt,
|
|
steps=kwargs.get("steps"),
|
|
seed=kwargs.get("seed"),
|
|
guidance_scale=kwargs.get("prompt_adherence"),
|
|
num_frames=128,
|
|
width=width_height.get("width"),
|
|
height=width_height.get("height"),
|
|
)
|
|
request = MoonvalleyTextToVideoRequest(
|
|
prompt_text=prompt, inference_params=inference_params
|
|
)
|
|
|
|
initial_operation = SynchronousOperation(
|
|
endpoint=ApiEndpoint(
|
|
path=API_TXT2VIDEO_ENDPOINT,
|
|
method=HttpMethod.POST,
|
|
request_model=MoonvalleyTextToVideoRequest,
|
|
response_model=MoonvalleyPromptResponse,
|
|
),
|
|
request=request,
|
|
auth_kwargs=kwargs,
|
|
)
|
|
task_creation_response = await initial_operation.execute()
|
|
validate_task_creation_response(task_creation_response)
|
|
task_id = task_creation_response.id
|
|
|
|
final_response = await self.get_response(
|
|
task_id, auth_kwargs=kwargs, node_id=unique_id
|
|
)
|
|
|
|
video = await download_url_to_video_output(final_response.output_url)
|
|
return (video,)
|
|
|
|
|
|
NODE_CLASS_MAPPINGS = {
|
|
"MoonvalleyImg2VideoNode": MoonvalleyImg2VideoNode,
|
|
"MoonvalleyTxt2VideoNode": MoonvalleyTxt2VideoNode,
|
|
"MoonvalleyVideo2VideoNode": MoonvalleyVideo2VideoNode,
|
|
}
|
|
|
|
|
|
NODE_DISPLAY_NAME_MAPPINGS = {
|
|
"MoonvalleyImg2VideoNode": "Moonvalley Marey Image to Video",
|
|
"MoonvalleyTxt2VideoNode": "Moonvalley Marey Text to Video",
|
|
"MoonvalleyVideo2VideoNode": "Moonvalley Marey Video to Video",
|
|
}
|