ComfyUI/comfy_extras/v3/nodes_ip2p.py
2025-07-24 18:23:29 -07:00

57 lines
1.6 KiB
Python

from __future__ import annotations
import torch
from comfy_api.latest import io
class InstructPixToPixConditioning(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="InstructPixToPixConditioning_V3",
category="conditioning/instructpix2pix",
inputs=[
io.Conditioning.Input("positive"),
io.Conditioning.Input("negative"),
io.Vae.Input("vae"),
io.Image.Input("pixels"),
],
outputs=[
io.Conditioning.Output(display_name="positive"),
io.Conditioning.Output(display_name="negative"),
io.Latent.Output(display_name="latent"),
],
)
@classmethod
def execute(cls, positive, negative, pixels, vae):
x = (pixels.shape[1] // 8) * 8
y = (pixels.shape[2] // 8) * 8
if pixels.shape[1] != x or pixels.shape[2] != y:
x_offset = (pixels.shape[1] % 8) // 2
y_offset = (pixels.shape[2] % 8) // 2
pixels = pixels[:,x_offset:x + x_offset, y_offset:y + y_offset,:]
concat_latent = vae.encode(pixels)
out_latent = {}
out_latent["samples"] = torch.zeros_like(concat_latent)
out = []
for conditioning in [positive, negative]:
c = []
for t in conditioning:
d = t[1].copy()
d["concat_latent_image"] = concat_latent
n = [t[0], d]
c.append(n)
out.append(c)
return io.NodeOutput(out[0], out[1], out_latent)
NODES_LIST = [
InstructPixToPixConditioning,
]