ComfyUI/comfy_extras/v3/nodes_custom_sampler.py
2025-07-25 16:31:39 +03:00

1036 lines
37 KiB
Python

from __future__ import annotations
import math
import torch
import comfy.sample
import comfy.samplers
import comfy.utils
import latent_preview
import node_helpers
from comfy.k_diffusion import sa_solver
from comfy.k_diffusion import sampling as k_diffusion_sampling
from comfy_api.latest import io
class Noise_EmptyNoise:
def __init__(self):
self.seed = 0
def generate_noise(self, input_latent):
latent_image = input_latent["samples"]
return torch.zeros(latent_image.shape, dtype=latent_image.dtype, layout=latent_image.layout, device="cpu")
class Noise_RandomNoise:
def __init__(self, seed):
self.seed = seed
def generate_noise(self, input_latent):
latent_image = input_latent["samples"]
batch_inds = input_latent["batch_index"] if "batch_index" in input_latent else None
return comfy.sample.prepare_noise(latent_image, self.seed, batch_inds)
class Guider_Basic(comfy.samplers.CFGGuider):
def set_conds(self, positive):
self.inner_set_conds({"positive": positive})
class Guider_DualCFG(comfy.samplers.CFGGuider):
def set_cfg(self, cfg1, cfg2, nested=False):
self.cfg1 = cfg1
self.cfg2 = cfg2
self.nested = nested
def set_conds(self, positive, middle, negative):
middle = node_helpers.conditioning_set_values(middle, {"prompt_type": "negative"})
self.inner_set_conds({"positive": positive, "middle": middle, "negative": negative})
def predict_noise(self, x, timestep, model_options={}, seed=None):
negative_cond = self.conds.get("negative", None)
middle_cond = self.conds.get("middle", None)
positive_cond = self.conds.get("positive", None)
if self.nested:
out = comfy.samplers.calc_cond_batch(self.inner_model, [negative_cond, middle_cond, positive_cond], x, timestep, model_options)
pred_text = comfy.samplers.cfg_function(self.inner_model, out[2], out[1], self.cfg1, x, timestep, model_options=model_options, cond=positive_cond, uncond=middle_cond)
return out[0] + self.cfg2 * (pred_text - out[0])
else:
if model_options.get("disable_cfg1_optimization", False) is False:
if math.isclose(self.cfg2, 1.0):
negative_cond = None
if math.isclose(self.cfg1, 1.0):
middle_cond = None
out = comfy.samplers.calc_cond_batch(self.inner_model, [negative_cond, middle_cond, positive_cond], x, timestep, model_options)
return comfy.samplers.cfg_function(self.inner_model, out[1], out[0], self.cfg2, x, timestep, model_options=model_options, cond=middle_cond, uncond=negative_cond) + (out[2] - out[1]) * self.cfg1
class AddNoise(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="AddNoise_V3",
category="_for_testing/custom_sampling/noise",
is_experimental=True,
inputs=[
io.Model.Input("model"),
io.Noise.Input("noise"),
io.Sigmas.Input("sigmas"),
io.Latent.Input("latent_image"),
],
outputs=[
io.Latent.Output(),
]
)
@classmethod
def execute(cls, model, noise, sigmas, latent_image):
if len(sigmas) == 0:
return io.NodeOutput(latent_image)
latent = latent_image
latent_image = latent["samples"]
noisy = noise.generate_noise(latent)
model_sampling = model.get_model_object("model_sampling")
process_latent_out = model.get_model_object("process_latent_out")
process_latent_in = model.get_model_object("process_latent_in")
if len(sigmas) > 1:
scale = torch.abs(sigmas[0] - sigmas[-1])
else:
scale = sigmas[0]
if torch.count_nonzero(latent_image) > 0: #Don't shift the empty latent image.
latent_image = process_latent_in(latent_image)
noisy = model_sampling.noise_scaling(scale, noisy, latent_image)
noisy = process_latent_out(noisy)
noisy = torch.nan_to_num(noisy, nan=0.0, posinf=0.0, neginf=0.0)
out = latent.copy()
out["samples"] = noisy
return io.NodeOutput(out)
class BasicGuider(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="BasicGuider_V3",
category="sampling/custom_sampling/guiders",
inputs=[
io.Model.Input("model"),
io.Conditioning.Input("conditioning"),
],
outputs=[
io.Guider.Output(),
]
)
@classmethod
def execute(cls, model, conditioning):
guider = Guider_Basic(model)
guider.set_conds(conditioning)
return io.NodeOutput(guider)
class BasicScheduler(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="BasicScheduler_V3",
category="sampling/custom_sampling/schedulers",
inputs=[
io.Model.Input("model"),
io.Combo.Input("scheduler", options=comfy.samplers.SCHEDULER_NAMES),
io.Int.Input("steps", default=20, min=1, max=10000),
io.Float.Input("denoise", default=1.0, min=0.0, max=1.0, step=0.01),
],
outputs=[
io.Sigmas.Output(),
]
)
@classmethod
def execute(cls, model, scheduler, steps, denoise):
total_steps = steps
if denoise < 1.0:
if denoise <= 0.0:
return io.NodeOutput(torch.FloatTensor([]))
total_steps = int(steps/denoise)
sigmas = comfy.samplers.calculate_sigmas(model.get_model_object("model_sampling"), scheduler, total_steps).cpu()
sigmas = sigmas[-(steps + 1):]
return io.NodeOutput(sigmas)
class BetaSamplingScheduler(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="BetaSamplingScheduler_V3",
category="sampling/custom_sampling/schedulers",
inputs=[
io.Model.Input("model"),
io.Int.Input("steps", default=20, min=1, max=10000),
io.Float.Input("alpha", default=0.6, min=0.0, max=50.0, step=0.01, round=False),
io.Float.Input("beta", default=0.6, min=0.0, max=50.0, step=0.01, round=False),
],
outputs=[
io.Sigmas.Output(),
]
)
@classmethod
def execute(cls, model, steps, alpha, beta):
sigmas = comfy.samplers.beta_scheduler(model.get_model_object("model_sampling"), steps, alpha=alpha, beta=beta)
return io.NodeOutput(sigmas)
class CFGGuider(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="CFGGuider_V3",
category="sampling/custom_sampling/guiders",
inputs=[
io.Model.Input("model"),
io.Conditioning.Input("positive"),
io.Conditioning.Input("negative"),
io.Float.Input("cfg", default=8.0, min=0.0, max=100.0, step=0.1, round=0.01),
],
outputs=[
io.Guider.Output(),
]
)
@classmethod
def execute(cls, model, positive, negative, cfg):
guider = comfy.samplers.CFGGuider(model)
guider.set_conds(positive, negative)
guider.set_cfg(cfg)
return io.NodeOutput(guider)
class DisableNoise(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="DisableNoise_V3",
category="sampling/custom_sampling/noise",
inputs=[],
outputs=[
io.Noise.Output(),
]
)
@classmethod
def execute(cls):
return io.NodeOutput(Noise_EmptyNoise())
class DualCFGGuider(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="DualCFGGuider_V3",
category="sampling/custom_sampling/guiders",
inputs=[
io.Model.Input("model"),
io.Conditioning.Input("cond1"),
io.Conditioning.Input("cond2"),
io.Conditioning.Input("negative"),
io.Float.Input("cfg_conds", default=8.0, min=0.0, max=100.0, step=0.1, round=0.01),
io.Float.Input("cfg_cond2_negative", default=8.0, min=0.0, max=100.0, step=0.1, round=0.01),
io.Combo.Input("style", options=["regular", "nested"]),
],
outputs=[
io.Guider.Output(),
]
)
@classmethod
def execute(cls, model, cond1, cond2, negative, cfg_conds, cfg_cond2_negative, style):
guider = Guider_DualCFG(model)
guider.set_conds(cond1, cond2, negative)
guider.set_cfg(cfg_conds, cfg_cond2_negative, nested=(style == "nested"))
return io.NodeOutput(guider)
class ExponentialScheduler(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="ExponentialScheduler_V3",
category="sampling/custom_sampling/schedulers",
inputs=[
io.Int.Input("steps", default=20, min=1, max=10000),
io.Float.Input("sigma_max", default=14.614642, min=0.0, max=5000.0, step=0.01, round=False),
io.Float.Input("sigma_min", default=0.0291675, min=0.0, max=5000.0, step=0.01, round=False),
],
outputs=[
io.Sigmas.Output(),
]
)
@classmethod
def execute(cls, steps, sigma_max, sigma_min):
sigmas = k_diffusion_sampling.get_sigmas_exponential(n=steps, sigma_min=sigma_min, sigma_max=sigma_max)
return io.NodeOutput(sigmas)
class ExtendIntermediateSigmas(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="ExtendIntermediateSigmas_V3",
category="sampling/custom_sampling/sigmas",
inputs=[
io.Sigmas.Input("sigmas"),
io.Int.Input("steps", default=2, min=1, max=100),
io.Float.Input("start_at_sigma", default=-1.0, min=-1.0, max=20000.0, step=0.01, round=False),
io.Float.Input("end_at_sigma", default=12.0, min=0.0, max=20000.0, step=0.01, round=False),
io.Combo.Input("spacing", options=['linear', 'cosine', 'sine']),
],
outputs=[
io.Sigmas.Output(),
]
)
@classmethod
def execute(cls, sigmas: torch.Tensor, steps: int, start_at_sigma: float, end_at_sigma: float, spacing: str):
if start_at_sigma < 0:
start_at_sigma = float("inf")
interpolator = {
'linear': lambda x: x,
'cosine': lambda x: torch.sin(x*math.pi/2),
'sine': lambda x: 1 - torch.cos(x*math.pi/2)
}[spacing]
# linear space for our interpolation function
x = torch.linspace(0, 1, steps + 1, device=sigmas.device)[1:-1]
computed_spacing = interpolator(x)
extended_sigmas = []
for i in range(len(sigmas) - 1):
sigma_current = sigmas[i]
sigma_next = sigmas[i+1]
extended_sigmas.append(sigma_current)
if end_at_sigma <= sigma_current <= start_at_sigma:
interpolated_steps = computed_spacing * (sigma_next - sigma_current) + sigma_current
extended_sigmas.extend(interpolated_steps.tolist())
# Add the last sigma value
if len(sigmas) > 0:
extended_sigmas.append(sigmas[-1])
extended_sigmas = torch.FloatTensor(extended_sigmas)
return io.NodeOutput(extended_sigmas)
class FlipSigmas(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="FlipSigmas_V3",
category="sampling/custom_sampling/sigmas",
inputs=[
io.Sigmas.Input("sigmas"),
],
outputs=[
io.Sigmas.Output(),
]
)
@classmethod
def execute(cls, sigmas):
if len(sigmas) == 0:
return io.NodeOutput(sigmas)
sigmas = sigmas.flip(0)
if sigmas[0] == 0:
sigmas[0] = 0.0001
return io.NodeOutput(sigmas)
class KarrasScheduler(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="KarrasScheduler_V3",
category="sampling/custom_sampling/schedulers",
inputs=[
io.Int.Input("steps", default=20, min=1, max=10000),
io.Float.Input("sigma_max", default=14.614642, min=0.0, max=5000.0, step=0.01, round=False),
io.Float.Input("sigma_min", default=0.0291675, min=0.0, max=5000.0, step=0.01, round=False),
io.Float.Input("rho", default=7.0, min=0.0, max=100.0, step=0.01, round=False),
],
outputs=[
io.Sigmas.Output(),
]
)
@classmethod
def execute(cls, steps, sigma_max, sigma_min, rho):
sigmas = k_diffusion_sampling.get_sigmas_karras(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, rho=rho)
return io.NodeOutput(sigmas)
class KSamplerSelect(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="KSamplerSelect_V3",
category="sampling/custom_sampling/samplers",
inputs=[
io.Combo.Input("sampler_name", options=comfy.samplers.SAMPLER_NAMES),
],
outputs=[
io.Sampler.Output(),
]
)
@classmethod
def execute(cls, sampler_name):
sampler = comfy.samplers.sampler_object(sampler_name)
return io.NodeOutput(sampler)
class LaplaceScheduler(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="LaplaceScheduler_V3",
category="sampling/custom_sampling/schedulers",
inputs=[
io.Int.Input("steps", default=20, min=1, max=10000),
io.Float.Input("sigma_max", default=14.614642, min=0.0, max=5000.0, step=0.01, round=False),
io.Float.Input("sigma_min", default=0.0291675, min=0.0, max=5000.0, step=0.01, round=False),
io.Float.Input("mu", default=0.0, min=-10.0, max=10.0, step=0.1, round=False),
io.Float.Input("beta", default=0.5, min=0.0, max=10.0, step=0.1, round=False),
],
outputs=[
io.Sigmas.Output(),
]
)
@classmethod
def execute(cls, steps, sigma_max, sigma_min, mu, beta):
sigmas = k_diffusion_sampling.get_sigmas_laplace(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, mu=mu, beta=beta)
return io.NodeOutput(sigmas)
class PolyexponentialScheduler(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="PolyexponentialScheduler_V3",
category="sampling/custom_sampling/schedulers",
inputs=[
io.Int.Input("steps", default=20, min=1, max=10000),
io.Float.Input("sigma_max", default=14.614642, min=0.0, max=5000.0, step=0.01, round=False),
io.Float.Input("sigma_min", default=0.0291675, min=0.0, max=5000.0, step=0.01, round=False),
io.Float.Input("rho", default=1.0, min=0.0, max=100.0, step=0.01, round=False),
],
outputs=[
io.Sigmas.Output(),
]
)
@classmethod
def execute(cls, steps, sigma_max, sigma_min, rho):
sigmas = k_diffusion_sampling.get_sigmas_polyexponential(n=steps, sigma_min=sigma_min, sigma_max=sigma_max, rho=rho)
return io.NodeOutput(sigmas)
class RandomNoise(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="RandomNoise_V3",
category="sampling/custom_sampling/noise",
inputs=[
io.Int.Input("noise_seed", default=0, min=0, max=0xffffffffffffffff, control_after_generate=True),
],
outputs=[
io.Noise.Output(),
]
)
@classmethod
def execute(cls, noise_seed):
return io.NodeOutput(Noise_RandomNoise(noise_seed))
class SamplerCustom(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="SamplerCustom_V3",
category="sampling/custom_sampling",
inputs=[
io.Model.Input("model"),
io.Boolean.Input("add_noise", default=True),
io.Int.Input("noise_seed", default=0, min=0, max=0xffffffffffffffff, control_after_generate=True),
io.Float.Input("cfg", default=8.0, min=0.0, max=100.0, step=0.1, round=0.01),
io.Conditioning.Input("positive"),
io.Conditioning.Input("negative"),
io.Sampler.Input("sampler"),
io.Sigmas.Input("sigmas"),
io.Latent.Input("latent_image"),
],
outputs=[
io.Latent.Output(display_name="output"),
io.Latent.Output(display_name="denoised_output"),
]
)
@classmethod
def execute(cls, model, add_noise, noise_seed, cfg, positive, negative, sampler, sigmas, latent_image):
latent = latent_image
latent_image = latent["samples"]
latent = latent.copy()
latent_image = comfy.sample.fix_empty_latent_channels(model, latent_image)
latent["samples"] = latent_image
if not add_noise:
noise = Noise_EmptyNoise().generate_noise(latent)
else:
noise = Noise_RandomNoise(noise_seed).generate_noise(latent)
noise_mask = None
if "noise_mask" in latent:
noise_mask = latent["noise_mask"]
x0_output = {}
callback = latent_preview.prepare_callback(model, sigmas.shape[-1] - 1, x0_output)
disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED
samples = comfy.sample.sample_custom(model, noise, cfg, sampler, sigmas, positive, negative, latent_image, noise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=noise_seed)
out = latent.copy()
out["samples"] = samples
if "x0" in x0_output:
out_denoised = latent.copy()
out_denoised["samples"] = model.model.process_latent_out(x0_output["x0"].cpu())
else:
out_denoised = out
return io.NodeOutput(out, out_denoised)
class SamplerCustomAdvanced(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="SamplerCustomAdvanced_V3",
category="sampling/custom_sampling",
inputs=[
io.Noise.Input("noise"),
io.Guider.Input("guider"),
io.Sampler.Input("sampler"),
io.Sigmas.Input("sigmas"),
io.Latent.Input("latent_image"),
],
outputs=[
io.Latent.Output(display_name="output"),
io.Latent.Output(display_name="denoised_output"),
]
)
@classmethod
def execute(cls, noise, guider, sampler, sigmas, latent_image):
latent = latent_image
latent_image = latent["samples"]
latent = latent.copy()
latent_image = comfy.sample.fix_empty_latent_channels(guider.model_patcher, latent_image)
latent["samples"] = latent_image
noise_mask = None
if "noise_mask" in latent:
noise_mask = latent["noise_mask"]
x0_output = {}
callback = latent_preview.prepare_callback(guider.model_patcher, sigmas.shape[-1] - 1, x0_output)
disable_pbar = not comfy.utils.PROGRESS_BAR_ENABLED
samples = guider.sample(noise.generate_noise(latent), latent_image, sampler, sigmas, denoise_mask=noise_mask, callback=callback, disable_pbar=disable_pbar, seed=noise.seed)
samples = samples.to(comfy.model_management.intermediate_device())
out = latent.copy()
out["samples"] = samples
if "x0" in x0_output:
out_denoised = latent.copy()
out_denoised["samples"] = guider.model_patcher.model.process_latent_out(x0_output["x0"].cpu())
else:
out_denoised = out
return io.NodeOutput(out, out_denoised)
class SamplerDPMAdaptative(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="SamplerDPMAdaptative_V3",
category="sampling/custom_sampling/samplers",
inputs=[
io.Int.Input("order", default=3, min=2, max=3),
io.Float.Input("rtol", default=0.05, min=0.0, max=100.0, step=0.01, round=False),
io.Float.Input("atol", default=0.0078, min=0.0, max=100.0, step=0.01, round=False),
io.Float.Input("h_init", default=0.05, min=0.0, max=100.0, step=0.01, round=False),
io.Float.Input("pcoeff", default=0.0, min=0.0, max=100.0, step=0.01, round=False),
io.Float.Input("icoeff", default=1.0, min=0.0, max=100.0, step=0.01, round=False),
io.Float.Input("dcoeff", default=0.0, min=0.0, max=100.0, step=0.01, round=False),
io.Float.Input("accept_safety", default=0.81, min=0.0, max=100.0, step=0.01, round=False),
io.Float.Input("eta", default=0.0, min=0.0, max=100.0, step=0.01, round=False),
io.Float.Input("s_noise", default=1.0, min=0.0, max=100.0, step=0.01, round=False),
],
outputs=[
io.Sampler.Output(),
]
)
@classmethod
def execute(cls, order, rtol, atol, h_init, pcoeff, icoeff, dcoeff, accept_safety, eta, s_noise):
sampler = comfy.samplers.ksampler("dpm_adaptive", {"order": order, "rtol": rtol, "atol": atol, "h_init": h_init, "pcoeff": pcoeff,
"icoeff": icoeff, "dcoeff": dcoeff, "accept_safety": accept_safety, "eta": eta,
"s_noise":s_noise })
return io.NodeOutput(sampler)
class SamplerDPMPP_2M_SDE(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="SamplerDPMPP_2M_SDE_V3",
category="sampling/custom_sampling/samplers",
inputs=[
io.Combo.Input("solver_type", options=['midpoint', 'heun']),
io.Float.Input("eta", default=1.0, min=0.0, max=100.0, step=0.01, round=False),
io.Float.Input("s_noise", default=1.0, min=0.0, max=100.0, step=0.01, round=False),
io.Combo.Input("noise_device", options=['gpu', 'cpu']),
],
outputs=[
io.Sampler.Output(),
]
)
@classmethod
def execute(cls, solver_type, eta, s_noise, noise_device):
if noise_device == 'cpu':
sampler_name = "dpmpp_2m_sde"
else:
sampler_name = "dpmpp_2m_sde_gpu"
sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "solver_type": solver_type})
return io.NodeOutput(sampler)
class SamplerDPMPP_2S_Ancestral(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="SamplerDPMPP_2S_Ancestral_V3",
category="sampling/custom_sampling/samplers",
inputs=[
io.Float.Input("eta", default=1.0, min=0.0, max=100.0, step=0.01, round=False),
io.Float.Input("s_noise", default=1.0, min=0.0, max=100.0, step=0.01, round=False),
],
outputs=[
io.Sampler.Output(),
]
)
@classmethod
def execute(cls, eta, s_noise):
sampler = comfy.samplers.ksampler("dpmpp_2s_ancestral", {"eta": eta, "s_noise": s_noise})
return io.NodeOutput(sampler)
class SamplerDPMPP_3M_SDE(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="SamplerDPMPP_3M_SDE_V3",
category="sampling/custom_sampling/samplers",
inputs=[
io.Float.Input("eta", default=1.0, min=0.0, max=100.0, step=0.01, round=False),
io.Float.Input("s_noise", default=1.0, min=0.0, max=100.0, step=0.01, round=False),
io.Combo.Input("noise_device", options=['gpu', 'cpu']),
],
outputs=[
io.Sampler.Output(),
]
)
@classmethod
def execute(cls, eta, s_noise, noise_device):
if noise_device == 'cpu':
sampler_name = "dpmpp_3m_sde"
else:
sampler_name = "dpmpp_3m_sde_gpu"
sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise})
return io.NodeOutput(sampler)
class SamplerDPMPP_SDE(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="SamplerDPMPP_SDE_V3",
category="sampling/custom_sampling/samplers",
inputs=[
io.Float.Input("eta", default=1.0, min=0.0, max=100.0, step=0.01, round=False),
io.Float.Input("s_noise", default=1.0, min=0.0, max=100.0, step=0.01, round=False),
io.Float.Input("r", default=0.5, min=0.0, max=100.0, step=0.01, round=False),
io.Combo.Input("noise_device", options=['gpu', 'cpu']),
],
outputs=[
io.Sampler.Output(),
]
)
@classmethod
def execute(cls, eta, s_noise, r, noise_device):
if noise_device == 'cpu':
sampler_name = "dpmpp_sde"
else:
sampler_name = "dpmpp_sde_gpu"
sampler = comfy.samplers.ksampler(sampler_name, {"eta": eta, "s_noise": s_noise, "r": r})
return io.NodeOutput(sampler)
class SamplerER_SDE(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="SamplerER_SDE_V3",
category="sampling/custom_sampling/samplers",
inputs=[
io.Combo.Input("solver_type", options=["ER-SDE", "Reverse-time SDE", "ODE"]),
io.Int.Input("max_stage", default=3, min=1, max=3),
io.Float.Input("eta", default=1.0, min=0.0, max=100.0, step=0.01, round=False, tooltip="Stochastic strength of reverse-time SDE.\nWhen eta=0, it reduces to deterministic ODE. This setting doesn't apply to ER-SDE solver type."),
io.Float.Input("s_noise", default=1.0, min=0.0, max=100.0, step=0.01, round=False),
],
outputs=[
io.Sampler.Output(),
]
)
@classmethod
def execute(cls, solver_type, max_stage, eta, s_noise):
if solver_type == "ODE" or (solver_type == "Reverse-time SDE" and eta == 0):
eta = 0
s_noise = 0
def reverse_time_sde_noise_scaler(x):
return x ** (eta + 1)
if solver_type == "ER-SDE":
# Use the default one in sample_er_sde()
noise_scaler = None
else:
noise_scaler = reverse_time_sde_noise_scaler
sampler_name = "er_sde"
sampler = comfy.samplers.ksampler(sampler_name, {"s_noise": s_noise, "noise_scaler": noise_scaler, "max_stage": max_stage})
return io.NodeOutput(sampler)
class SamplerEulerAncestral(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="SamplerEulerAncestral_V3",
category="sampling/custom_sampling/samplers",
inputs=[
io.Float.Input("eta", default=1.0, min=0.0, max=100.0, step=0.01, round=False),
io.Float.Input("s_noise", default=1.0, min=0.0, max=100.0, step=0.01, round=False),
],
outputs=[
io.Sampler.Output(),
]
)
@classmethod
def execute(cls, eta, s_noise):
sampler = comfy.samplers.ksampler("euler_ancestral", {"eta": eta, "s_noise": s_noise})
return io.NodeOutput(sampler)
class SamplerEulerAncestralCFGPP(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="SamplerEulerAncestralCFGPP_V3",
display_name="SamplerEulerAncestralCFG++ _V3",
category="sampling/custom_sampling/samplers",
inputs=[
io.Float.Input("eta", default=1.0, min=0.0, max=1.0, step=0.01, round=False),
io.Float.Input("s_noise", default=1.0, min=0.0, max=10.0, step=0.01, round=False),
],
outputs=[
io.Sampler.Output(),
]
)
@classmethod
def execute(cls, eta, s_noise):
sampler = comfy.samplers.ksampler(
"euler_ancestral_cfg_pp",
{"eta": eta, "s_noise": s_noise})
return io.NodeOutput(sampler)
class SamplerLMS(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="SamplerLMS_V3",
category="sampling/custom_sampling/samplers",
inputs=[
io.Int.Input("order", default=4, min=1, max=100),
],
outputs=[
io.Sampler.Output()
]
)
@classmethod
def execute(cls, order):
sampler = comfy.samplers.ksampler("lms", {"order": order})
return io.NodeOutput(sampler)
class SamplerSASolver(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="SamplerSASolver_V3",
category="sampling/custom_sampling/samplers",
inputs=[
io.Model.Input("model"),
io.Float.Input("eta", default=1.0, min=0.0, max=10.0, step=0.01, round=False),
io.Float.Input("sde_start_percent", default=0.2, min=0.0, max=1.0, step=0.001),
io.Float.Input("sde_end_percent", default=0.8, min=0.0, max=1.0, step=0.001),
io.Float.Input("s_noise", default=1.0, min=0.0, max=100.0, step=0.01, round=False),
io.Int.Input("predictor_order", default=3, min=1, max=6),
io.Int.Input("corrector_order", default=4, min=0, max=6),
io.Boolean.Input("use_pece"),
io.Boolean.Input("simple_order_2"),
],
outputs=[
io.Sampler.Output(),
]
)
@classmethod
def execute(cls, model, eta, sde_start_percent, sde_end_percent, s_noise, predictor_order, corrector_order, use_pece, simple_order_2):
model_sampling = model.get_model_object("model_sampling")
start_sigma = model_sampling.percent_to_sigma(sde_start_percent)
end_sigma = model_sampling.percent_to_sigma(sde_end_percent)
tau_func = sa_solver.get_tau_interval_func(start_sigma, end_sigma, eta=eta)
sampler_name = "sa_solver"
sampler = comfy.samplers.ksampler(
sampler_name,
{
"tau_func": tau_func,
"s_noise": s_noise,
"predictor_order": predictor_order,
"corrector_order": corrector_order,
"use_pece": use_pece,
"simple_order_2": simple_order_2,
},
)
return io.NodeOutput(sampler)
class SamplingPercentToSigma(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="SamplingPercentToSigma_V3",
category="sampling/custom_sampling/sigmas",
inputs=[
io.Model.Input("model"),
io.Float.Input("sampling_percent", default=0.0, min=0.0, max=1.0, step=0.0001),
io.Boolean.Input("return_actual_sigma", default=False, tooltip="Return the actual sigma value instead of the value used for interval checks.\nThis only affects results at 0.0 and 1.0."),
],
outputs=[
io.Float.Output(display_name="sigma_value"),
]
)
@classmethod
def execute(cls, model, sampling_percent, return_actual_sigma):
model_sampling = model.get_model_object("model_sampling")
sigma_val = model_sampling.percent_to_sigma(sampling_percent)
if return_actual_sigma:
if sampling_percent == 0.0:
sigma_val = model_sampling.sigma_max.item()
elif sampling_percent == 1.0:
sigma_val = model_sampling.sigma_min.item()
return io.NodeOutput(sigma_val)
class SDTurboScheduler(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="SDTurboScheduler_V3",
category="sampling/custom_sampling/schedulers",
inputs=[
io.Model.Input("model"),
io.Int.Input("steps", default=1, min=1, max=10),
io.Float.Input("denoise", default=1.0, min=0, max=1.0, step=0.01),
],
outputs=[
io.Sigmas.Output(),
]
)
@classmethod
def execute(cls, model, steps, denoise):
start_step = 10 - int(10 * denoise)
timesteps = torch.flip(torch.arange(1, 11) * 100 - 1, (0,))[start_step:start_step + steps]
sigmas = model.get_model_object("model_sampling").sigma(timesteps)
sigmas = torch.cat([sigmas, sigmas.new_zeros([1])])
return io.NodeOutput(sigmas)
class SetFirstSigma(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="SetFirstSigma_V3",
category="sampling/custom_sampling/sigmas",
inputs=[
io.Sigmas.Input("sigmas"),
io.Float.Input("sigma", default=136.0, min=0.0, max=20000.0, step=0.001, round=False),
],
outputs=[
io.Sigmas.Output(),
]
)
@classmethod
def execute(cls, sigmas, sigma):
sigmas = sigmas.clone()
sigmas[0] = sigma
return io.NodeOutput(sigmas)
class SplitSigmas(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="SplitSigmas_V3",
category="sampling/custom_sampling/sigmas",
inputs=[
io.Sigmas.Input("sigmas"),
io.Int.Input("step", default=0, min=0, max=10000),
],
outputs=[
io.Sigmas.Output(display_name="high_sigmas"),
io.Sigmas.Output(display_name="low_sigmas"),
]
)
@classmethod
def execute(cls, sigmas, step):
sigmas1 = sigmas[:step + 1]
sigmas2 = sigmas[step:]
return io.NodeOutput(sigmas1, sigmas2)
class SplitSigmasDenoise(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="SplitSigmasDenoise_V3",
category="sampling/custom_sampling/sigmas",
inputs=[
io.Sigmas.Input("sigmas"),
io.Float.Input("denoise", default=1.0, min=0.0, max=1.0, step=0.01),
],
outputs=[
io.Sigmas.Output(display_name="high_sigmas"),
io.Sigmas.Output(display_name="low_sigmas"),
]
)
@classmethod
def execute(cls, sigmas, denoise):
steps = max(sigmas.shape[-1] - 1, 0)
total_steps = round(steps * denoise)
sigmas1 = sigmas[:-(total_steps)]
sigmas2 = sigmas[-(total_steps + 1):]
return io.NodeOutput(sigmas1, sigmas2)
class VPScheduler(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="VPScheduler_V3",
category="sampling/custom_sampling/schedulers",
inputs=[
io.Int.Input("steps", default=20, min=1, max=10000),
io.Float.Input("beta_d", default=19.9, min=0.0, max=5000.0, step=0.01, round=False),
io.Float.Input("beta_min", default=0.1, min=0.0, max=5000.0, step=0.01, round=False),
io.Float.Input("eps_s", default=0.001, min=0.0, max=1.0, step=0.0001, round=False),
],
outputs=[
io.Sigmas.Output(),
]
)
@classmethod
def execute(cls, steps, beta_d, beta_min, eps_s):
sigmas = k_diffusion_sampling.get_sigmas_vp(n=steps, beta_d=beta_d, beta_min=beta_min, eps_s=eps_s)
return io.NodeOutput(sigmas)
NODES_LIST = [
AddNoise,
BasicGuider,
BasicScheduler,
BetaSamplingScheduler,
CFGGuider,
DisableNoise,
DualCFGGuider,
ExponentialScheduler,
ExtendIntermediateSigmas,
FlipSigmas,
KarrasScheduler,
KSamplerSelect,
LaplaceScheduler,
PolyexponentialScheduler,
RandomNoise,
SamplerCustom,
SamplerCustomAdvanced,
SamplerDPMAdaptative,
SamplerDPMPP_2M_SDE,
SamplerDPMPP_2S_Ancestral,
SamplerDPMPP_3M_SDE,
SamplerDPMPP_SDE,
SamplerER_SDE,
SamplerEulerAncestral,
SamplerEulerAncestralCFGPP,
SamplerLMS,
SamplerSASolver,
SamplingPercentToSigma,
SDTurboScheduler,
SetFirstSigma,
SplitSigmas,
SplitSigmasDenoise,
VPScheduler,
]