mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-07-27 16:26:39 +00:00
111 lines
3.6 KiB
Python
111 lines
3.6 KiB
Python
# Code based on https://github.com/WikiChao/FreSca (MIT License)
|
|
|
|
from __future__ import annotations
|
|
|
|
import torch
|
|
import torch.fft as fft
|
|
|
|
from comfy_api.v3 import io
|
|
|
|
|
|
def Fourier_filter(x, scale_low=1.0, scale_high=1.5, freq_cutoff=20):
|
|
"""
|
|
Apply frequency-dependent scaling to an image tensor using Fourier transforms.
|
|
|
|
Parameters:
|
|
x: Input tensor of shape (B, C, H, W)
|
|
scale_low: Scaling factor for low-frequency components (default: 1.0)
|
|
scale_high: Scaling factor for high-frequency components (default: 1.5)
|
|
freq_cutoff: Number of frequency indices around center to consider as low-frequency (default: 20)
|
|
|
|
Returns:
|
|
x_filtered: Filtered version of x in spatial domain with frequency-specific scaling applied.
|
|
"""
|
|
# Preserve input dtype and device
|
|
dtype, device = x.dtype, x.device
|
|
|
|
# Convert to float32 for FFT computations
|
|
x = x.to(torch.float32)
|
|
|
|
# 1) Apply FFT and shift low frequencies to center
|
|
x_freq = fft.fftn(x, dim=(-2, -1))
|
|
x_freq = fft.fftshift(x_freq, dim=(-2, -1))
|
|
|
|
# Initialize mask with high-frequency scaling factor
|
|
mask = torch.ones(x_freq.shape, device=device) * scale_high
|
|
m = mask
|
|
for d in range(len(x_freq.shape) - 2):
|
|
dim = d + 2
|
|
cc = x_freq.shape[dim] // 2
|
|
f_c = min(freq_cutoff, cc)
|
|
m = m.narrow(dim, cc - f_c, f_c * 2)
|
|
|
|
# Apply low-frequency scaling factor to center region
|
|
m[:] = scale_low
|
|
|
|
# 3) Apply frequency-specific scaling
|
|
x_freq = x_freq * mask
|
|
|
|
# 4) Convert back to spatial domain
|
|
x_freq = fft.ifftshift(x_freq, dim=(-2, -1))
|
|
x_filtered = fft.ifftn(x_freq, dim=(-2, -1)).real
|
|
|
|
# 5) Restore original dtype
|
|
x_filtered = x_filtered.to(dtype)
|
|
|
|
return x_filtered
|
|
|
|
|
|
class FreSca(io.ComfyNode):
|
|
@classmethod
|
|
def define_schema(cls):
|
|
return io.Schema(
|
|
node_id="FreSca_V3",
|
|
display_name="FreSca _V3",
|
|
category="_for_testing",
|
|
description="Applies frequency-dependent scaling to the guidance",
|
|
inputs=[
|
|
io.Model.Input(id="model"),
|
|
io.Float.Input(id="scale_low", default=1.0, min=0, max=10, step=0.01,
|
|
tooltip="Scaling factor for low-frequency components"),
|
|
io.Float.Input(id="scale_high", default=1.25, min=0, max=10, step=0.01,
|
|
tooltip="Scaling factor for high-frequency components"),
|
|
io.Int.Input(id="freq_cutoff", default=20, min=1, max=10000, step=1,
|
|
tooltip="Number of frequency indices around center to consider as low-frequency"),
|
|
],
|
|
outputs=[
|
|
io.Model.Output(),
|
|
],
|
|
is_experimental=True,
|
|
)
|
|
|
|
@classmethod
|
|
def execute(cls, model, scale_low, scale_high, freq_cutoff):
|
|
def custom_cfg_function(args):
|
|
conds_out = args["conds_out"]
|
|
if len(conds_out) <= 1 or None in args["conds"][:2]:
|
|
return conds_out
|
|
cond = conds_out[0]
|
|
uncond = conds_out[1]
|
|
|
|
guidance = cond - uncond
|
|
filtered_guidance = Fourier_filter(
|
|
guidance,
|
|
scale_low=scale_low,
|
|
scale_high=scale_high,
|
|
freq_cutoff=freq_cutoff,
|
|
)
|
|
filtered_cond = filtered_guidance + uncond
|
|
|
|
return [filtered_cond, uncond] + conds_out[2:]
|
|
|
|
m = model.clone()
|
|
m.set_model_sampler_pre_cfg_function(custom_cfg_function)
|
|
|
|
return io.NodeOutput(m)
|
|
|
|
|
|
NODES_LIST = [
|
|
FreSca,
|
|
]
|