Files
ComfyUI/comfy_extras/nodes_model_patch.py
comfyanonymous 3412d53b1d USO style reference. (#9677)
Load the projector.safetensors file with the ModelPatchLoader node and use
the siglip_vision_patch14_384.safetensors "clip vision" model and the
USOStyleReferenceNode.
2025-09-02 15:36:22 -04:00

344 lines
13 KiB
Python

import torch
from torch import nn
import folder_paths
import comfy.utils
import comfy.ops
import comfy.model_management
import comfy.ldm.common_dit
import comfy.latent_formats
class BlockWiseControlBlock(torch.nn.Module):
# [linear, gelu, linear]
def __init__(self, dim: int = 3072, device=None, dtype=None, operations=None):
super().__init__()
self.x_rms = operations.RMSNorm(dim, eps=1e-6)
self.y_rms = operations.RMSNorm(dim, eps=1e-6)
self.input_proj = operations.Linear(dim, dim)
self.act = torch.nn.GELU()
self.output_proj = operations.Linear(dim, dim)
def forward(self, x, y):
x, y = self.x_rms(x), self.y_rms(y)
x = self.input_proj(x + y)
x = self.act(x)
x = self.output_proj(x)
return x
class QwenImageBlockWiseControlNet(torch.nn.Module):
def __init__(
self,
num_layers: int = 60,
in_dim: int = 64,
additional_in_dim: int = 0,
dim: int = 3072,
device=None, dtype=None, operations=None
):
super().__init__()
self.additional_in_dim = additional_in_dim
self.img_in = operations.Linear(in_dim + additional_in_dim, dim, device=device, dtype=dtype)
self.controlnet_blocks = torch.nn.ModuleList(
[
BlockWiseControlBlock(dim, device=device, dtype=dtype, operations=operations)
for _ in range(num_layers)
]
)
def process_input_latent_image(self, latent_image):
latent_image[:, :16] = comfy.latent_formats.Wan21().process_in(latent_image[:, :16])
patch_size = 2
hidden_states = comfy.ldm.common_dit.pad_to_patch_size(latent_image, (1, patch_size, patch_size))
orig_shape = hidden_states.shape
hidden_states = hidden_states.view(orig_shape[0], orig_shape[1], orig_shape[-2] // 2, 2, orig_shape[-1] // 2, 2)
hidden_states = hidden_states.permute(0, 2, 4, 1, 3, 5)
hidden_states = hidden_states.reshape(orig_shape[0], (orig_shape[-2] // 2) * (orig_shape[-1] // 2), orig_shape[1] * 4)
return self.img_in(hidden_states)
def control_block(self, img, controlnet_conditioning, block_id):
return self.controlnet_blocks[block_id](img, controlnet_conditioning)
class SigLIPMultiFeatProjModel(torch.nn.Module):
"""
SigLIP Multi-Feature Projection Model for processing style features from different layers
and projecting them into a unified hidden space.
Args:
siglip_token_nums (int): Number of SigLIP tokens, default 257
style_token_nums (int): Number of style tokens, default 256
siglip_token_dims (int): Dimension of SigLIP tokens, default 1536
hidden_size (int): Hidden layer size, default 3072
context_layer_norm (bool): Whether to use context layer normalization, default False
"""
def __init__(
self,
siglip_token_nums: int = 729,
style_token_nums: int = 64,
siglip_token_dims: int = 1152,
hidden_size: int = 3072,
context_layer_norm: bool = True,
device=None, dtype=None, operations=None
):
super().__init__()
# High-level feature processing (layer -2)
self.high_embedding_linear = nn.Sequential(
operations.Linear(siglip_token_nums, style_token_nums),
nn.SiLU()
)
self.high_layer_norm = (
operations.LayerNorm(siglip_token_dims) if context_layer_norm else nn.Identity()
)
self.high_projection = operations.Linear(siglip_token_dims, hidden_size, bias=True)
# Mid-level feature processing (layer -11)
self.mid_embedding_linear = nn.Sequential(
operations.Linear(siglip_token_nums, style_token_nums),
nn.SiLU()
)
self.mid_layer_norm = (
operations.LayerNorm(siglip_token_dims) if context_layer_norm else nn.Identity()
)
self.mid_projection = operations.Linear(siglip_token_dims, hidden_size, bias=True)
# Low-level feature processing (layer -20)
self.low_embedding_linear = nn.Sequential(
operations.Linear(siglip_token_nums, style_token_nums),
nn.SiLU()
)
self.low_layer_norm = (
operations.LayerNorm(siglip_token_dims) if context_layer_norm else nn.Identity()
)
self.low_projection = operations.Linear(siglip_token_dims, hidden_size, bias=True)
def forward(self, siglip_outputs):
"""
Forward pass function
Args:
siglip_outputs: Output from SigLIP model, containing hidden_states
Returns:
torch.Tensor: Concatenated multi-layer features with shape [bs, 3*style_token_nums, hidden_size]
"""
dtype = next(self.high_embedding_linear.parameters()).dtype
# Process high-level features (layer -2)
high_embedding = self._process_layer_features(
siglip_outputs[2],
self.high_embedding_linear,
self.high_layer_norm,
self.high_projection,
dtype
)
# Process mid-level features (layer -11)
mid_embedding = self._process_layer_features(
siglip_outputs[1],
self.mid_embedding_linear,
self.mid_layer_norm,
self.mid_projection,
dtype
)
# Process low-level features (layer -20)
low_embedding = self._process_layer_features(
siglip_outputs[0],
self.low_embedding_linear,
self.low_layer_norm,
self.low_projection,
dtype
)
# Concatenate features from all layersmodel_patch
return torch.cat((high_embedding, mid_embedding, low_embedding), dim=1)
def _process_layer_features(
self,
hidden_states: torch.Tensor,
embedding_linear: nn.Module,
layer_norm: nn.Module,
projection: nn.Module,
dtype: torch.dtype
) -> torch.Tensor:
"""
Helper function to process features from a single layer
Args:
hidden_states: Input hidden states [bs, seq_len, dim]
embedding_linear: Embedding linear layer
layer_norm: Layer normalization
projection: Projection layer
dtype: Target data type
Returns:
torch.Tensor: Processed features [bs, style_token_nums, hidden_size]
"""
# Transform dimensions: [bs, seq_len, dim] -> [bs, dim, seq_len] -> [bs, dim, style_token_nums] -> [bs, style_token_nums, dim]
embedding = embedding_linear(
hidden_states.to(dtype).transpose(1, 2)
).transpose(1, 2)
# Apply layer normalization
embedding = layer_norm(embedding)
# Project to target hidden space
embedding = projection(embedding)
return embedding
class ModelPatchLoader:
@classmethod
def INPUT_TYPES(s):
return {"required": { "name": (folder_paths.get_filename_list("model_patches"), ),
}}
RETURN_TYPES = ("MODEL_PATCH",)
FUNCTION = "load_model_patch"
EXPERIMENTAL = True
CATEGORY = "advanced/loaders"
def load_model_patch(self, name):
model_patch_path = folder_paths.get_full_path_or_raise("model_patches", name)
sd = comfy.utils.load_torch_file(model_patch_path, safe_load=True)
dtype = comfy.utils.weight_dtype(sd)
if 'controlnet_blocks.0.y_rms.weight' in sd:
additional_in_dim = sd["img_in.weight"].shape[1] - 64
model = QwenImageBlockWiseControlNet(additional_in_dim=additional_in_dim, device=comfy.model_management.unet_offload_device(), dtype=dtype, operations=comfy.ops.manual_cast)
elif 'feature_embedder.mid_layer_norm.bias' in sd:
sd = comfy.utils.state_dict_prefix_replace(sd, {"feature_embedder.": ""}, filter_keys=True)
model = SigLIPMultiFeatProjModel(device=comfy.model_management.unet_offload_device(), dtype=dtype, operations=comfy.ops.manual_cast)
model.load_state_dict(sd)
model = comfy.model_patcher.ModelPatcher(model, load_device=comfy.model_management.get_torch_device(), offload_device=comfy.model_management.unet_offload_device())
return (model,)
class DiffSynthCnetPatch:
def __init__(self, model_patch, vae, image, strength, mask=None):
self.model_patch = model_patch
self.vae = vae
self.image = image
self.strength = strength
self.mask = mask
self.encoded_image = model_patch.model.process_input_latent_image(self.encode_latent_cond(image))
self.encoded_image_size = (image.shape[1], image.shape[2])
def encode_latent_cond(self, image):
latent_image = self.vae.encode(image)
if self.model_patch.model.additional_in_dim > 0:
if self.mask is None:
mask_ = torch.ones_like(latent_image)[:, :self.model_patch.model.additional_in_dim // 4]
else:
mask_ = comfy.utils.common_upscale(self.mask.mean(dim=1, keepdim=True), latent_image.shape[-1], latent_image.shape[-2], "bilinear", "none")
return torch.cat([latent_image, mask_], dim=1)
else:
return latent_image
def __call__(self, kwargs):
x = kwargs.get("x")
img = kwargs.get("img")
block_index = kwargs.get("block_index")
spacial_compression = self.vae.spacial_compression_encode()
if self.encoded_image is None or self.encoded_image_size != (x.shape[-2] * spacial_compression, x.shape[-1] * spacial_compression):
image_scaled = comfy.utils.common_upscale(self.image.movedim(-1, 1), x.shape[-1] * spacial_compression, x.shape[-2] * spacial_compression, "area", "center")
loaded_models = comfy.model_management.loaded_models(only_currently_used=True)
self.encoded_image = self.model_patch.model.process_input_latent_image(self.encode_latent_cond(image_scaled.movedim(1, -1)))
self.encoded_image_size = (image_scaled.shape[-2], image_scaled.shape[-1])
comfy.model_management.load_models_gpu(loaded_models)
img[:, :self.encoded_image.shape[1]] += (self.model_patch.model.control_block(img[:, :self.encoded_image.shape[1]], self.encoded_image.to(img.dtype), block_index) * self.strength)
kwargs['img'] = img
return kwargs
def to(self, device_or_dtype):
if isinstance(device_or_dtype, torch.device):
self.encoded_image = self.encoded_image.to(device_or_dtype)
return self
def models(self):
return [self.model_patch]
class QwenImageDiffsynthControlnet:
@classmethod
def INPUT_TYPES(s):
return {"required": { "model": ("MODEL",),
"model_patch": ("MODEL_PATCH",),
"vae": ("VAE",),
"image": ("IMAGE",),
"strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}),
},
"optional": {"mask": ("MASK",)}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "diffsynth_controlnet"
EXPERIMENTAL = True
CATEGORY = "advanced/loaders/qwen"
def diffsynth_controlnet(self, model, model_patch, vae, image, strength, mask=None):
model_patched = model.clone()
image = image[:, :, :, :3]
if mask is not None:
if mask.ndim == 3:
mask = mask.unsqueeze(1)
if mask.ndim == 4:
mask = mask.unsqueeze(2)
mask = 1.0 - mask
model_patched.set_model_double_block_patch(DiffSynthCnetPatch(model_patch, vae, image, strength, mask))
return (model_patched,)
class UsoStyleProjectorPatch:
def __init__(self, model_patch, encoded_image):
self.model_patch = model_patch
self.encoded_image = encoded_image
def __call__(self, kwargs):
txt_ids = kwargs.get("txt_ids")
txt = kwargs.get("txt")
siglip_embedding = self.model_patch.model(self.encoded_image.to(txt.dtype)).to(txt.dtype)
txt = torch.cat([siglip_embedding, txt], dim=1)
kwargs['txt'] = txt
kwargs['txt_ids'] = torch.cat([torch.zeros(siglip_embedding.shape[0], siglip_embedding.shape[1], 3, dtype=txt_ids.dtype, device=txt_ids.device), txt_ids], dim=1)
return kwargs
def to(self, device_or_dtype):
if isinstance(device_or_dtype, torch.device):
self.encoded_image = self.encoded_image.to(device_or_dtype)
return self
def models(self):
return [self.model_patch]
class USOStyleReference:
@classmethod
def INPUT_TYPES(s):
return {"required": {"model": ("MODEL",),
"model_patch": ("MODEL_PATCH",),
"clip_vision_output": ("CLIP_VISION_OUTPUT", ),
}}
RETURN_TYPES = ("MODEL",)
FUNCTION = "apply_patch"
EXPERIMENTAL = True
CATEGORY = "advanced/model_patches/flux"
def apply_patch(self, model, model_patch, clip_vision_output):
encoded_image = torch.stack((clip_vision_output.all_hidden_states[:, -20], clip_vision_output.all_hidden_states[:, -11], clip_vision_output.penultimate_hidden_states))
model_patched = model.clone()
model_patched.set_model_post_input_patch(UsoStyleProjectorPatch(model_patch, encoded_image))
return (model_patched,)
NODE_CLASS_MAPPINGS = {
"ModelPatchLoader": ModelPatchLoader,
"QwenImageDiffsynthControlnet": QwenImageDiffsynthControlnet,
"USOStyleReference": USOStyleReference,
}