mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-07-27 08:16:44 +00:00
89 lines
2.7 KiB
Python
89 lines
2.7 KiB
Python
from __future__ import annotations
|
|
|
|
import torch
|
|
|
|
from comfy_api.v3 import io
|
|
|
|
|
|
def optimized_scale(positive, negative):
|
|
positive_flat = positive.reshape(positive.shape[0], -1)
|
|
negative_flat = negative.reshape(negative.shape[0], -1)
|
|
|
|
# Calculate dot production
|
|
dot_product = torch.sum(positive_flat * negative_flat, dim=1, keepdim=True)
|
|
|
|
# Squared norm of uncondition
|
|
squared_norm = torch.sum(negative_flat ** 2, dim=1, keepdim=True) + 1e-8
|
|
|
|
# st_star = v_cond^T * v_uncond / ||v_uncond||^2
|
|
st_star = dot_product / squared_norm
|
|
|
|
return st_star.reshape([positive.shape[0]] + [1] * (positive.ndim - 1))
|
|
|
|
|
|
class CFGNorm(io.ComfyNodeV3):
|
|
@classmethod
|
|
def define_schema(cls) -> io.SchemaV3:
|
|
return io.SchemaV3(
|
|
node_id="CFGNorm_V3",
|
|
category="advanced/guidance",
|
|
inputs=[
|
|
io.Model.Input("model"),
|
|
io.Float.Input("strength", default=1.0, min=0.0, max=100.0, step=0.01),
|
|
],
|
|
outputs=[io.Model.Output("patched_model", display_name="patched_model")],
|
|
is_experimental=True,
|
|
)
|
|
|
|
@classmethod
|
|
def execute(cls, model, strength) -> io.NodeOutput:
|
|
m = model.clone()
|
|
|
|
def cfg_norm(args):
|
|
cond_p = args['cond_denoised']
|
|
pred_text_ = args["denoised"]
|
|
|
|
norm_full_cond = torch.norm(cond_p, dim=1, keepdim=True)
|
|
norm_pred_text = torch.norm(pred_text_, dim=1, keepdim=True)
|
|
scale = (norm_full_cond / (norm_pred_text + 1e-8)).clamp(min=0.0, max=1.0)
|
|
return pred_text_ * scale * strength
|
|
|
|
m.set_model_sampler_post_cfg_function(cfg_norm)
|
|
return io.NodeOutput(m)
|
|
|
|
|
|
class CFGZeroStar(io.ComfyNodeV3):
|
|
@classmethod
|
|
def define_schema(cls) -> io.SchemaV3:
|
|
return io.SchemaV3(
|
|
node_id="CFGZeroStar_V3",
|
|
category="advanced/guidance",
|
|
inputs=[
|
|
io.Model.Input("model"),
|
|
],
|
|
outputs=[io.Model.Output("patched_model", display_name="patched_model")],
|
|
)
|
|
|
|
@classmethod
|
|
def execute(cls, model) -> io.NodeOutput:
|
|
m = model.clone()
|
|
|
|
def cfg_zero_star(args):
|
|
guidance_scale = args['cond_scale']
|
|
x = args['input']
|
|
cond_p = args['cond_denoised']
|
|
uncond_p = args['uncond_denoised']
|
|
out = args["denoised"]
|
|
alpha = optimized_scale(x - cond_p, x - uncond_p)
|
|
|
|
return out + uncond_p * (alpha - 1.0) + guidance_scale * uncond_p * (1.0 - alpha)
|
|
|
|
m.set_model_sampler_post_cfg_function(cfg_zero_star)
|
|
return io.NodeOutput(m)
|
|
|
|
|
|
NODES_LIST = [
|
|
CFGNorm,
|
|
CFGZeroStar,
|
|
]
|