mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2025-07-27 16:26:39 +00:00
218 lines
8.9 KiB
Python
218 lines
8.9 KiB
Python
from __future__ import annotations
|
|
|
|
import numpy as np
|
|
import torch
|
|
from einops import rearrange
|
|
|
|
import comfy.model_management
|
|
import nodes
|
|
from comfy_api.latest import io
|
|
|
|
CAMERA_DICT = {
|
|
"base_T_norm": 1.5,
|
|
"base_angle": np.pi / 3,
|
|
"Static": {"angle": [0.0, 0.0, 0.0], "T": [0.0, 0.0, 0.0]},
|
|
"Pan Up": {"angle": [0.0, 0.0, 0.0], "T": [0.0, -1.0, 0.0]},
|
|
"Pan Down": {"angle": [0.0, 0.0, 0.0], "T": [0.0, 1.0, 0.0]},
|
|
"Pan Left": {"angle": [0.0, 0.0, 0.0], "T": [-1.0, 0.0, 0.0]},
|
|
"Pan Right": {"angle": [0.0, 0.0, 0.0], "T": [1.0, 0.0, 0.0]},
|
|
"Zoom In": {"angle": [0.0, 0.0, 0.0], "T": [0.0, 0.0, 2.0]},
|
|
"Zoom Out": {"angle": [0.0, 0.0, 0.0], "T": [0.0, 0.0, -2.0]},
|
|
"Anti Clockwise (ACW)": {"angle": [0.0, 0.0, -1.0], "T": [0.0, 0.0, 0.0]},
|
|
"ClockWise (CW)": {"angle": [0.0, 0.0, 1.0], "T": [0.0, 0.0, 0.0]},
|
|
}
|
|
|
|
|
|
def process_pose_params(cam_params, width=672, height=384, original_pose_width=1280, original_pose_height=720, device="cpu"):
|
|
def get_relative_pose(cam_params):
|
|
"""Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py"""
|
|
abs_w2cs = [cam_param.w2c_mat for cam_param in cam_params]
|
|
abs_c2ws = [cam_param.c2w_mat for cam_param in cam_params]
|
|
cam_to_origin = 0
|
|
target_cam_c2w = np.array([[1, 0, 0, 0], [0, 1, 0, -cam_to_origin], [0, 0, 1, 0], [0, 0, 0, 1]])
|
|
abs2rel = target_cam_c2w @ abs_w2cs[0]
|
|
ret_poses = [target_cam_c2w] + [abs2rel @ abs_c2w for abs_c2w in abs_c2ws[1:]]
|
|
return np.array(ret_poses, dtype=np.float32)
|
|
|
|
"""Modified from https://github.com/hehao13/CameraCtrl/blob/main/inference.py"""
|
|
cam_params = [Camera(cam_param) for cam_param in cam_params]
|
|
|
|
sample_wh_ratio = width / height
|
|
pose_wh_ratio = original_pose_width / original_pose_height # Assuming placeholder ratios, change as needed
|
|
|
|
if pose_wh_ratio > sample_wh_ratio:
|
|
resized_ori_w = height * pose_wh_ratio
|
|
for cam_param in cam_params:
|
|
cam_param.fx = resized_ori_w * cam_param.fx / width
|
|
else:
|
|
resized_ori_h = width / pose_wh_ratio
|
|
for cam_param in cam_params:
|
|
cam_param.fy = resized_ori_h * cam_param.fy / height
|
|
|
|
intrinsic = np.asarray(
|
|
[[cam_param.fx * width, cam_param.fy * height, cam_param.cx * width, cam_param.cy * height] for cam_param in cam_params],
|
|
dtype=np.float32,
|
|
)
|
|
|
|
K = torch.as_tensor(intrinsic)[None] # [1, 1, 4]
|
|
c2ws = get_relative_pose(cam_params) # Assuming this function is defined elsewhere
|
|
c2ws = torch.as_tensor(c2ws)[None] # [1, n_frame, 4, 4]
|
|
plucker_embedding = ray_condition(K, c2ws, height, width, device=device)[0].permute(0, 3, 1, 2).contiguous() # V, 6, H, W
|
|
plucker_embedding = plucker_embedding[None]
|
|
return rearrange(plucker_embedding, "b f c h w -> b f h w c")[0]
|
|
|
|
|
|
class Camera:
|
|
"""Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py"""
|
|
|
|
def __init__(self, entry):
|
|
fx, fy, cx, cy = entry[1:5]
|
|
self.fx = fx
|
|
self.fy = fy
|
|
self.cx = cx
|
|
self.cy = cy
|
|
c2w_mat = np.array(entry[7:]).reshape(4, 4)
|
|
self.c2w_mat = c2w_mat
|
|
self.w2c_mat = np.linalg.inv(c2w_mat)
|
|
|
|
|
|
def ray_condition(K, c2w, H, W, device):
|
|
"""Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py"""
|
|
# c2w: B, V, 4, 4
|
|
# K: B, V, 4
|
|
|
|
B = K.shape[0]
|
|
|
|
j, i = torch.meshgrid(
|
|
torch.linspace(0, H - 1, H, device=device, dtype=c2w.dtype),
|
|
torch.linspace(0, W - 1, W, device=device, dtype=c2w.dtype),
|
|
indexing="ij",
|
|
)
|
|
i = i.reshape([1, 1, H * W]).expand([B, 1, H * W]) + 0.5 # [B, HxW]
|
|
j = j.reshape([1, 1, H * W]).expand([B, 1, H * W]) + 0.5 # [B, HxW]
|
|
|
|
fx, fy, cx, cy = K.chunk(4, dim=-1) # B,V, 1
|
|
|
|
zs = torch.ones_like(i) # [B, HxW]
|
|
xs = (i - cx) / fx * zs
|
|
ys = (j - cy) / fy * zs
|
|
zs = zs.expand_as(ys)
|
|
|
|
directions = torch.stack((xs, ys, zs), dim=-1) # B, V, HW, 3
|
|
directions = directions / directions.norm(dim=-1, keepdim=True) # B, V, HW, 3
|
|
|
|
rays_d = directions @ c2w[..., :3, :3].transpose(-1, -2) # B, V, 3, HW
|
|
rays_o = c2w[..., :3, 3] # B, V, 3
|
|
rays_o = rays_o[:, :, None].expand_as(rays_d) # B, V, 3, HW
|
|
# c2w @ dirctions
|
|
rays_dxo = torch.cross(rays_o, rays_d)
|
|
plucker = torch.cat([rays_dxo, rays_d], dim=-1)
|
|
plucker = plucker.reshape(B, c2w.shape[1], H, W, 6) # B, V, H, W, 6
|
|
# plucker = plucker.permute(0, 1, 4, 2, 3)
|
|
return plucker
|
|
|
|
|
|
def get_camera_motion(angle, T, speed, n=81):
|
|
def compute_R_form_rad_angle(angles):
|
|
theta_x, theta_y, theta_z = angles
|
|
Rx = np.array([[1, 0, 0], [0, np.cos(theta_x), -np.sin(theta_x)], [0, np.sin(theta_x), np.cos(theta_x)]])
|
|
|
|
Ry = np.array([[np.cos(theta_y), 0, np.sin(theta_y)], [0, 1, 0], [-np.sin(theta_y), 0, np.cos(theta_y)]])
|
|
|
|
Rz = np.array([[np.cos(theta_z), -np.sin(theta_z), 0], [np.sin(theta_z), np.cos(theta_z), 0], [0, 0, 1]])
|
|
|
|
R = np.dot(Rz, np.dot(Ry, Rx))
|
|
return R
|
|
|
|
RT = []
|
|
for i in range(n):
|
|
_angle = (i / n) * speed * (CAMERA_DICT["base_angle"]) * angle
|
|
R = compute_R_form_rad_angle(_angle)
|
|
_T = (i / n) * speed * (CAMERA_DICT["base_T_norm"]) * (T.reshape(3, 1))
|
|
_RT = np.concatenate([R, _T], axis=1)
|
|
RT.append(_RT)
|
|
RT = np.stack(RT)
|
|
return RT
|
|
|
|
|
|
class WanCameraEmbedding(io.ComfyNode):
|
|
@classmethod
|
|
def define_schema(cls):
|
|
return io.Schema(
|
|
node_id="WanCameraEmbedding_V3",
|
|
category="camera",
|
|
inputs=[
|
|
io.Combo.Input(
|
|
"camera_pose",
|
|
options=[
|
|
"Static",
|
|
"Pan Up",
|
|
"Pan Down",
|
|
"Pan Left",
|
|
"Pan Right",
|
|
"Zoom In",
|
|
"Zoom Out",
|
|
"Anti Clockwise (ACW)",
|
|
"ClockWise (CW)",
|
|
],
|
|
default="Static",
|
|
),
|
|
io.Int.Input("width", default=832, min=16, max=nodes.MAX_RESOLUTION, step=16),
|
|
io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16),
|
|
io.Int.Input("length", default=81, min=1, max=nodes.MAX_RESOLUTION, step=4),
|
|
io.Float.Input("speed", default=1.0, min=0, max=10.0, step=0.1, optional=True),
|
|
io.Float.Input("fx", default=0.5, min=0, max=1, step=0.000000001, optional=True),
|
|
io.Float.Input("fy", default=0.5, min=0, max=1, step=0.000000001, optional=True),
|
|
io.Float.Input("cx", default=0.5, min=0, max=1, step=0.01, optional=True),
|
|
io.Float.Input("cy", default=0.5, min=0, max=1, step=0.01, optional=True),
|
|
],
|
|
outputs=[
|
|
io.WanCameraEmbedding.Output(display_name="camera_embedding"),
|
|
io.Int.Output(display_name="width"),
|
|
io.Int.Output(display_name="height"),
|
|
io.Int.Output(display_name="length"),
|
|
],
|
|
)
|
|
|
|
@classmethod
|
|
def execute(cls, camera_pose, width, height, length, speed=1.0, fx=0.5, fy=0.5, cx=0.5, cy=0.5) -> io.NodeOutput:
|
|
"""
|
|
Use Camera trajectory as extrinsic parameters to calculate Plücker embeddings (Sitzmannet al., 2021)
|
|
Adapted from https://github.com/aigc-apps/VideoX-Fun/blob/main/comfyui/comfyui_nodes.py
|
|
"""
|
|
motion_list = [camera_pose]
|
|
speed = speed
|
|
angle = np.array(CAMERA_DICT[motion_list[0]]["angle"])
|
|
T = np.array(CAMERA_DICT[motion_list[0]]["T"])
|
|
RT = get_camera_motion(angle, T, speed, length)
|
|
|
|
trajs = []
|
|
for cp in RT.tolist():
|
|
traj = [fx, fy, cx, cy, 0, 0]
|
|
traj.extend(cp[0])
|
|
traj.extend(cp[1])
|
|
traj.extend(cp[2])
|
|
traj.extend([0, 0, 0, 1])
|
|
trajs.append(traj)
|
|
|
|
cam_params = np.array([[float(x) for x in pose] for pose in trajs])
|
|
cam_params = np.concatenate([np.zeros_like(cam_params[:, :1]), cam_params], 1)
|
|
control_camera_video = process_pose_params(cam_params, width=width, height=height)
|
|
control_camera_video = control_camera_video.permute([3, 0, 1, 2]).unsqueeze(0).to(device=comfy.model_management.intermediate_device())
|
|
|
|
control_camera_video = torch.concat(
|
|
[torch.repeat_interleave(control_camera_video[:, :, 0:1], repeats=4, dim=2), control_camera_video[:, :, 1:]], dim=2
|
|
).transpose(1, 2)
|
|
|
|
# Reshape, transpose, and view into desired shape
|
|
b, f, c, h, w = control_camera_video.shape
|
|
control_camera_video = control_camera_video.contiguous().view(b, f // 4, 4, c, h, w).transpose(2, 3)
|
|
control_camera_video = control_camera_video.contiguous().view(b, f // 4, c * 4, h, w).transpose(1, 2)
|
|
|
|
return io.NodeOutput(control_camera_video, width, height, length)
|
|
|
|
|
|
NODES_LIST = [
|
|
WanCameraEmbedding,
|
|
]
|