ComfyUI/comfy_extras/v3/nodes_post_processing.py

256 lines
9.6 KiB
Python

from __future__ import annotations
import math
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
import comfy.model_management
import comfy.utils
import node_helpers
from comfy_api.latest import io
class Blend(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="ImageBlend_V3",
category="image/postprocessing",
inputs=[
io.Image.Input("image1"),
io.Image.Input("image2"),
io.Float.Input("blend_factor", default=0.5, min=0.0, max=1.0, step=0.01),
io.Combo.Input("blend_mode", options=["normal", "multiply", "screen", "overlay", "soft_light", "difference"]),
],
outputs=[
io.Image.Output(),
],
)
@classmethod
def execute(cls, image1: torch.Tensor, image2: torch.Tensor, blend_factor: float, blend_mode: str):
image1, image2 = node_helpers.image_alpha_fix(image1, image2)
image2 = image2.to(image1.device)
if image1.shape != image2.shape:
image2 = image2.permute(0, 3, 1, 2)
image2 = comfy.utils.common_upscale(
image2, image1.shape[2], image1.shape[1], upscale_method="bicubic", crop="center"
)
image2 = image2.permute(0, 2, 3, 1)
blended_image = cls.blend_mode(image1, image2, blend_mode)
blended_image = image1 * (1 - blend_factor) + blended_image * blend_factor
blended_image = torch.clamp(blended_image, 0, 1)
return io.NodeOutput(blended_image)
@classmethod
def blend_mode(cls, img1, img2, mode):
if mode == "normal":
return img2
elif mode == "multiply":
return img1 * img2
elif mode == "screen":
return 1 - (1 - img1) * (1 - img2)
elif mode == "overlay":
return torch.where(img1 <= 0.5, 2 * img1 * img2, 1 - 2 * (1 - img1) * (1 - img2))
elif mode == "soft_light":
return torch.where(img2 <= 0.5, img1 - (1 - 2 * img2) * img1 * (1 - img1), img1 + (2 * img2 - 1) * (cls.g(img1) - img1))
elif mode == "difference":
return img1 - img2
raise ValueError(f"Unsupported blend mode: {mode}")
@classmethod
def g(cls, x):
return torch.where(x <= 0.25, ((16 * x - 12) * x + 4) * x, torch.sqrt(x))
class Blur(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="ImageBlur_V3",
category="image/postprocessing",
inputs=[
io.Image.Input("image"),
io.Int.Input("blur_radius", default=1, min=1, max=31, step=1),
io.Float.Input("sigma", default=1.0, min=0.1, max=10.0, step=0.1),
],
outputs=[
io.Image.Output(),
],
)
@classmethod
def execute(cls, image: torch.Tensor, blur_radius: int, sigma: float):
if blur_radius == 0:
return io.NodeOutput(image)
image = image.to(comfy.model_management.get_torch_device())
batch_size, height, width, channels = image.shape
kernel_size = blur_radius * 2 + 1
kernel = gaussian_kernel(kernel_size, sigma, device=image.device).repeat(channels, 1, 1).unsqueeze(1)
image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
padded_image = F.pad(image, (blur_radius,blur_radius,blur_radius,blur_radius), "reflect")
blurred = F.conv2d(padded_image, kernel, padding=kernel_size // 2, groups=channels)[:,:,blur_radius:-blur_radius, blur_radius:-blur_radius]
blurred = blurred.permute(0, 2, 3, 1)
return io.NodeOutput(blurred.to(comfy.model_management.intermediate_device()))
def gaussian_kernel(kernel_size: int, sigma: float, device=None):
x, y = torch.meshgrid(torch.linspace(-1, 1, kernel_size, device=device), torch.linspace(-1, 1, kernel_size, device=device), indexing="ij")
d = torch.sqrt(x * x + y * y)
g = torch.exp(-(d * d) / (2.0 * sigma * sigma))
return g / g.sum()
class Quantize(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="ImageQuantize_V3",
category="image/postprocessing",
inputs=[
io.Image.Input("image"),
io.Int.Input("colors", default=256, min=1, max=256, step=1),
io.Combo.Input("dither", options=["none", "floyd-steinberg", "bayer-2", "bayer-4", "bayer-8", "bayer-16"]),
],
outputs=[
io.Image.Output(),
],
)
@staticmethod
def bayer(im, pal_im, order):
def normalized_bayer_matrix(n):
if n == 0:
return np.zeros((1,1), "float32")
q = 4 ** n
m = q * normalized_bayer_matrix(n - 1)
return np.bmat(((m-1.5, m+0.5), (m+1.5, m-0.5))) / q
num_colors = len(pal_im.getpalette()) // 3
spread = 2 * 256 / num_colors
bayer_n = int(math.log2(order))
bayer_matrix = torch.from_numpy(spread * normalized_bayer_matrix(bayer_n) + 0.5)
result = torch.from_numpy(np.array(im).astype(np.float32))
tw = math.ceil(result.shape[0] / bayer_matrix.shape[0])
th = math.ceil(result.shape[1] / bayer_matrix.shape[1])
tiled_matrix = bayer_matrix.tile(tw, th).unsqueeze(-1)
result.add_(tiled_matrix[:result.shape[0],:result.shape[1]]).clamp_(0, 255)
result = result.to(dtype=torch.uint8)
im = Image.fromarray(result.cpu().numpy())
return im.quantize(palette=pal_im, dither=Image.Dither.NONE)
@classmethod
def execute(cls, image: torch.Tensor, colors: int, dither: str):
batch_size, height, width, _ = image.shape
result = torch.zeros_like(image)
for b in range(batch_size):
im = Image.fromarray((image[b] * 255).to(torch.uint8).numpy(), mode='RGB')
pal_im = im.quantize(colors=colors) # Required as described in https://github.com/python-pillow/Pillow/issues/5836
if dither == "none":
quantized_image = im.quantize(palette=pal_im, dither=Image.Dither.NONE)
elif dither == "floyd-steinberg":
quantized_image = im.quantize(palette=pal_im, dither=Image.Dither.FLOYDSTEINBERG)
elif dither.startswith("bayer"):
order = int(dither.split('-')[-1])
quantized_image = cls.bayer(im, pal_im, order)
quantized_array = torch.tensor(np.array(quantized_image.convert("RGB"))).float() / 255
result[b] = quantized_array
return io.NodeOutput(result)
class Sharpen(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="ImageSharpen_V3",
category="image/postprocessing",
inputs=[
io.Image.Input("image"),
io.Int.Input("sharpen_radius", default=1, min=1, max=31, step=1),
io.Float.Input("sigma", default=1.0, min=0.1, max=10.0, step=0.01),
io.Float.Input("alpha", default=1.0, min=0.0, max=5.0, step=0.01),
],
outputs=[
io.Image.Output(),
],
)
@classmethod
def execute(cls, image: torch.Tensor, sharpen_radius: int, sigma:float, alpha: float):
if sharpen_radius == 0:
return io.NodeOutput(image)
batch_size, height, width, channels = image.shape
image = image.to(comfy.model_management.get_torch_device())
kernel_size = sharpen_radius * 2 + 1
kernel = gaussian_kernel(kernel_size, sigma, device=image.device) * -(alpha*10)
center = kernel_size // 2
kernel[center, center] = kernel[center, center] - kernel.sum() + 1.0
kernel = kernel.repeat(channels, 1, 1).unsqueeze(1)
tensor_image = image.permute(0, 3, 1, 2) # Torch wants (B, C, H, W) we use (B, H, W, C)
tensor_image = F.pad(tensor_image, (sharpen_radius,sharpen_radius,sharpen_radius,sharpen_radius), "reflect")
sharpened = F.conv2d(tensor_image, kernel, padding=center, groups=channels)[:,:,sharpen_radius:-sharpen_radius, sharpen_radius:-sharpen_radius]
sharpened = sharpened.permute(0, 2, 3, 1)
result = torch.clamp(sharpened, 0, 1)
return io.NodeOutput(result.to(comfy.model_management.intermediate_device()))
class ImageScaleToTotalPixels(io.ComfyNode):
upscale_methods = ["nearest-exact", "bilinear", "area", "bicubic", "lanczos"]
crop_methods = ["disabled", "center"]
@classmethod
def define_schema(cls):
return io.Schema(
node_id="ImageScaleToTotalPixels_V3",
category="image/upscaling",
inputs=[
io.Image.Input("image"),
io.Combo.Input("upscale_method", options=cls.upscale_methods),
io.Float.Input("megapixels", default=1.0, min=0.01, max=16.0, step=0.01),
],
outputs=[
io.Image.Output(),
],
)
@classmethod
def execute(cls, image, upscale_method, megapixels):
samples = image.movedim(-1,1)
total = int(megapixels * 1024 * 1024)
scale_by = math.sqrt(total / (samples.shape[3] * samples.shape[2]))
width = round(samples.shape[3] * scale_by)
height = round(samples.shape[2] * scale_by)
s = comfy.utils.common_upscale(samples, width, height, upscale_method, "disabled")
return io.NodeOutput(s.movedim(1,-1))
NODES_LIST: list[type[io.ComfyNode]] = [
Blend,
Blur,
ImageScaleToTotalPixels,
Quantize,
Sharpen,
]