import torch # https://github.com/WeichenFan/CFG-Zero-star def optimized_scale(positive, negative): positive_flat = positive.reshape(positive.shape[0], -1) negative_flat = negative.reshape(negative.shape[0], -1) # Calculate dot production dot_product = torch.sum(positive_flat * negative_flat, dim=1, keepdim=True) # Squared norm of uncondition squared_norm = torch.sum(negative_flat ** 2, dim=1, keepdim=True) + 1e-8 # st_star = v_cond^T * v_uncond / ||v_uncond||^2 st_star = dot_product / squared_norm return st_star.reshape([positive.shape[0]] + [1] * (positive.ndim - 1)) class CFGZeroStar: @classmethod def INPUT_TYPES(s): return {"required": {"model": ("MODEL",), }} RETURN_TYPES = ("MODEL",) RETURN_NAMES = ("patched_model",) FUNCTION = "patch" CATEGORY = "advanced/guidance" def patch(self, model): m = model.clone() def cfg_zero_star(args): guidance_scale = args['cond_scale'] x = args['input'] cond_p = args['cond_denoised'] uncond_p = args['uncond_denoised'] out = args["denoised"] alpha = optimized_scale(x - cond_p, x - uncond_p) return out + uncond_p * (alpha - 1.0) + guidance_scale * uncond_p * (1.0 - alpha) m.set_model_sampler_post_cfg_function(cfg_zero_star) return (m, ) class CFGNorm: @classmethod def INPUT_TYPES(s): return {"required": {"model": ("MODEL",), "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.01}), }} RETURN_TYPES = ("MODEL",) RETURN_NAMES = ("patched_model",) FUNCTION = "patch" CATEGORY = "advanced/guidance" EXPERIMENTAL = True def patch(self, model, strength): m = model.clone() def cfg_norm(args): cond_p = args['cond_denoised'] pred_text_ = args["denoised"] norm_full_cond = torch.norm(cond_p, dim=1, keepdim=True) norm_pred_text = torch.norm(pred_text_, dim=1, keepdim=True) scale = (norm_full_cond / (norm_pred_text + 1e-8)).clamp(min=0.0, max=1.0) return pred_text_ * scale * strength m.set_model_sampler_post_cfg_function(cfg_norm) return (m, ) NODE_CLASS_MAPPINGS = { "CFGZeroStar": CFGZeroStar, "CFGNorm": CFGNorm, }