from __future__ import annotations import logging import torch from spandrel import ImageModelDescriptor, ModelLoader import comfy.utils import folder_paths from comfy import model_management from comfy_api.latest import io try: from spandrel import MAIN_REGISTRY from spandrel_extra_arches import EXTRA_REGISTRY MAIN_REGISTRY.add(*EXTRA_REGISTRY) logging.info("Successfully imported spandrel_extra_arches: support for non commercial upscale models.") except Exception: pass class ImageUpscaleWithModel(io.ComfyNode): @classmethod def define_schema(cls): return io.Schema( node_id="ImageUpscaleWithModel_V3", display_name="Upscale Image (using Model) _V3", category="image/upscaling", inputs=[ io.UpscaleModel.Input("upscale_model"), io.Image.Input("image"), ], outputs=[ io.Image.Output(), ], ) @classmethod def execute(cls, upscale_model, image): device = model_management.get_torch_device() memory_required = model_management.module_size(upscale_model.model) memory_required += (512 * 512 * 3) * image.element_size() * max(upscale_model.scale, 1.0) * 384.0 #The 384.0 is an estimate of how much some of these models take, TODO: make it more accurate memory_required += image.nelement() * image.element_size() model_management.free_memory(memory_required, device) upscale_model.to(device) in_img = image.movedim(-1,-3).to(device) tile = 512 overlap = 32 oom = True while oom: try: steps = in_img.shape[0] * comfy.utils.get_tiled_scale_steps( in_img.shape[3], in_img.shape[2], tile_x=tile, tile_y=tile, overlap=overlap ) pbar = comfy.utils.ProgressBar(steps) s = comfy.utils.tiled_scale( in_img, lambda a: upscale_model(a), tile_x=tile, tile_y=tile, overlap=overlap, upscale_amount=upscale_model.scale, pbar=pbar ) oom = False except model_management.OOM_EXCEPTION as e: tile //= 2 if tile < 128: raise e upscale_model.to("cpu") s = torch.clamp(s.movedim(-3,-1), min=0, max=1.0) return io.NodeOutput(s) class UpscaleModelLoader(io.ComfyNode): @classmethod def define_schema(cls): return io.Schema( node_id="UpscaleModelLoader_V3", display_name="Load Upscale Model _V3", category="loaders", inputs=[ io.Combo.Input("model_name", options=folder_paths.get_filename_list("upscale_models")), ], outputs=[ io.UpscaleModel.Output(), ], ) @classmethod def execute(cls, model_name): model_path = folder_paths.get_full_path_or_raise("upscale_models", model_name) sd = comfy.utils.load_torch_file(model_path, safe_load=True) if "module.layers.0.residual_group.blocks.0.norm1.weight" in sd: sd = comfy.utils.state_dict_prefix_replace(sd, {"module.":""}) out = ModelLoader().load_from_state_dict(sd).eval() if not isinstance(out, ImageModelDescriptor): raise Exception("Upscale model must be a single-image model.") return io.NodeOutput(out) NODES_LIST = [ ImageUpscaleWithModel, UpscaleModelLoader, ]