from __future__ import annotations import numpy as np import torch from comfy_api.latest import io # from https://github.com/bebebe666/OptimalSteps def loglinear_interp(t_steps, num_steps): """Performs log-linear interpolation of a given array of decreasing numbers.""" xs = np.linspace(0, 1, len(t_steps)) ys = np.log(t_steps[::-1]) new_xs = np.linspace(0, 1, num_steps) new_ys = np.interp(new_xs, xs, ys) return np.exp(new_ys)[::-1].copy() NOISE_LEVELS = { "FLUX": [0.9968, 0.9886, 0.9819, 0.975, 0.966, 0.9471, 0.9158, 0.8287, 0.5512, 0.2808, 0.001], "Wan": [1.0, 0.997, 0.995, 0.993, 0.991, 0.989, 0.987, 0.985, 0.98, 0.975, 0.973, 0.968, 0.96, 0.946, 0.927, 0.902, 0.864, 0.776, 0.539, 0.208, 0.001], "Chroma": [0.992, 0.99, 0.988, 0.985, 0.982, 0.978, 0.973, 0.968, 0.961, 0.953, 0.943, 0.931, 0.917, 0.9, 0.881, 0.858, 0.832, 0.802, 0.769, 0.731, 0.69, 0.646, 0.599, 0.55, 0.501, 0.451, 0.402, 0.355, 0.311, 0.27, 0.232, 0.199, 0.169, 0.143, 0.12, 0.101, 0.084, 0.07, 0.058, 0.048, 0.001], } class OptimalStepsScheduler(io.ComfyNode): @classmethod def define_schema(cls): return io.Schema( node_id="OptimalStepsScheduler_V3", category="sampling/custom_sampling/schedulers", inputs=[ io.Combo.Input("model_type", options=["FLUX", "Wan", "Chroma"]), io.Int.Input("steps", default=20, min=3, max=1000), io.Float.Input("denoise", default=1.0, min=0.0, max=1.0, step=0.01), ], outputs=[ io.Sigmas.Output(), ], ) @classmethod def execute(cls, model_type, steps, denoise): total_steps = steps if denoise < 1.0: if denoise <= 0.0: return io.NodeOutput(torch.FloatTensor([])) total_steps = round(steps * denoise) sigmas = NOISE_LEVELS[model_type][:] if (steps + 1) != len(sigmas): sigmas = loglinear_interp(sigmas, steps + 1) sigmas = sigmas[-(total_steps + 1):] sigmas[-1] = 0 return io.NodeOutput(torch.FloatTensor(sigmas)) NODES_LIST = [ OptimalStepsScheduler, ]