#code originally taken from: https://github.com/ChenyangSi/FreeU (under MIT License) from __future__ import annotations import logging import torch from comfy_api.latest import io def Fourier_filter(x, threshold, scale): # FFT x_freq = torch.fft.fftn(x.float(), dim=(-2, -1)) x_freq = torch.fft.fftshift(x_freq, dim=(-2, -1)) B, C, H, W = x_freq.shape mask = torch.ones((B, C, H, W), device=x.device) crow, ccol = H // 2, W //2 mask[..., crow - threshold:crow + threshold, ccol - threshold:ccol + threshold] = scale x_freq = x_freq * mask # IFFT x_freq = torch.fft.ifftshift(x_freq, dim=(-2, -1)) x_filtered = torch.fft.ifftn(x_freq, dim=(-2, -1)).real return x_filtered.to(x.dtype) class FreeU(io.ComfyNode): @classmethod def define_schema(cls): return io.Schema( node_id="FreeU_V3", category="model_patches/unet", inputs=[ io.Model.Input("model"), io.Float.Input("b1", default=1.1, min=0.0, max=10.0, step=0.01), io.Float.Input("b2", default=1.2, min=0.0, max=10.0, step=0.01), io.Float.Input("s1", default=0.9, min=0.0, max=10.0, step=0.01), io.Float.Input("s2", default=0.2, min=0.0, max=10.0, step=0.01), ], outputs=[ io.Model.Output(), ], ) @classmethod def execute(cls, model, b1, b2, s1, s2): model_channels = model.model.model_config.unet_config["model_channels"] scale_dict = {model_channels * 4: (b1, s1), model_channels * 2: (b2, s2)} on_cpu_devices = {} def output_block_patch(h, hsp, transformer_options): scale = scale_dict.get(int(h.shape[1]), None) if scale is not None: h[:,:h.shape[1] // 2] = h[:,:h.shape[1] // 2] * scale[0] if hsp.device not in on_cpu_devices: try: hsp = Fourier_filter(hsp, threshold=1, scale=scale[1]) except Exception: logging.warning("Device {} does not support the torch.fft functions used in the FreeU node, switching to CPU.".format(hsp.device)) on_cpu_devices[hsp.device] = True hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device) else: hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device) return h, hsp m = model.clone() m.set_model_output_block_patch(output_block_patch) return io.NodeOutput(m) class FreeU_V2(io.ComfyNode): @classmethod def define_schema(cls): return io.Schema( node_id="FreeU_V2_V3", category="model_patches/unet", inputs=[ io.Model.Input("model"), io.Float.Input("b1", default=1.3, min=0.0, max=10.0, step=0.01), io.Float.Input("b2", default=1.4, min=0.0, max=10.0, step=0.01), io.Float.Input("s1", default=0.9, min=0.0, max=10.0, step=0.01), io.Float.Input("s2", default=0.2, min=0.0, max=10.0, step=0.01), ], outputs=[ io.Model.Output(), ], ) @classmethod def execute(cls, model, b1, b2, s1, s2): model_channels = model.model.model_config.unet_config["model_channels"] scale_dict = {model_channels * 4: (b1, s1), model_channels * 2: (b2, s2)} on_cpu_devices = {} def output_block_patch(h, hsp, transformer_options): scale = scale_dict.get(int(h.shape[1]), None) if scale is not None: hidden_mean = h.mean(1).unsqueeze(1) B = hidden_mean.shape[0] hidden_max, _ = torch.max(hidden_mean.view(B, -1), dim=-1, keepdim=True) hidden_min, _ = torch.min(hidden_mean.view(B, -1), dim=-1, keepdim=True) hidden_mean = (hidden_mean - hidden_min.unsqueeze(2).unsqueeze(3)) / (hidden_max - hidden_min).unsqueeze(2).unsqueeze(3) h[:,:h.shape[1] // 2] = h[:,:h.shape[1] // 2] * ((scale[0] - 1 ) * hidden_mean + 1) if hsp.device not in on_cpu_devices: try: hsp = Fourier_filter(hsp, threshold=1, scale=scale[1]) except Exception: logging.warning("Device {} does not support the torch.fft functions used in the FreeU node, switching to CPU.".format(hsp.device)) on_cpu_devices[hsp.device] = True hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device) else: hsp = Fourier_filter(hsp.cpu(), threshold=1, scale=scale[1]).to(hsp.device) return h, hsp m = model.clone() m.set_model_output_block_patch(output_block_patch) return io.NodeOutput(m) NODES_LIST: list[type[io.ComfyNode]] = [ FreeU, FreeU_V2, ]