from __future__ import annotations from comfy_api.v3 import io class CLIPTextEncodeControlnet(io.ComfyNode): @classmethod def define_schema(cls) -> io.Schema: return io.Schema( node_id="CLIPTextEncodeControlnet_V3", category="_for_testing/conditioning", inputs=[ io.Clip.Input("clip"), io.Conditioning.Input("conditioning"), io.String.Input("text", multiline=True, dynamic_prompts=True), ], outputs=[io.Conditioning.Output()], ) @classmethod def execute(cls, clip, conditioning, text) -> io.NodeOutput: tokens = clip.tokenize(text) cond, pooled = clip.encode_from_tokens(tokens, return_pooled=True) c = [] for t in conditioning: n = [t[0], t[1].copy()] n[1]['cross_attn_controlnet'] = cond n[1]['pooled_output_controlnet'] = pooled c.append(n) return io.NodeOutput(c) class T5TokenizerOptions(io.ComfyNode): @classmethod def define_schema(cls) -> io.Schema: return io.Schema( node_id="T5TokenizerOptions_V3", category="_for_testing/conditioning", inputs=[ io.Clip.Input("clip"), io.Int.Input("min_padding", default=0, min=0, max=10000, step=1), io.Int.Input("min_length", default=0, min=0, max=10000, step=1), ], outputs=[io.Clip.Output()], ) @classmethod def execute(cls, clip, min_padding, min_length) -> io.NodeOutput: clip = clip.clone() for t5_type in ["t5xxl", "pile_t5xl", "t5base", "mt5xl", "umt5xxl"]: clip.set_tokenizer_option("{}_min_padding".format(t5_type), min_padding) clip.set_tokenizer_option("{}_min_length".format(t5_type), min_length) return io.NodeOutput(clip) NODES_LIST = [ CLIPTextEncodeControlnet, T5TokenizerOptions, ]