from __future__ import annotations import hashlib import os import torch import torchaudio import comfy.model_management import folder_paths import node_helpers from comfy_api.v3 import io, ui class ConditioningStableAudio(io.ComfyNodeV3): @classmethod def define_schema(cls): return io.SchemaV3( node_id="ConditioningStableAudio_V3", category="conditioning", inputs=[ io.Conditioning.Input(id="positive"), io.Conditioning.Input(id="negative"), io.Float.Input(id="seconds_start", default=0.0, min=0.0, max=1000.0, step=0.1), io.Float.Input(id="seconds_total", default=47.0, min=0.0, max=1000.0, step=0.1), ], outputs=[ io.Conditioning.Output(id="positive_out", display_name="positive"), io.Conditioning.Output(id="negative_out", display_name="negative"), ], ) @classmethod def execute(cls, positive, negative, seconds_start, seconds_total) -> io.NodeOutput: return io.NodeOutput( node_helpers.conditioning_set_values( positive, {"seconds_start": seconds_start, "seconds_total": seconds_total} ), node_helpers.conditioning_set_values( negative, {"seconds_start": seconds_start, "seconds_total": seconds_total} ), ) class EmptyLatentAudio(io.ComfyNodeV3): @classmethod def define_schema(cls): return io.SchemaV3( node_id="EmptyLatentAudio_V3", category="latent/audio", inputs=[ io.Float.Input(id="seconds", default=47.6, min=1.0, max=1000.0, step=0.1), io.Int.Input( id="batch_size", default=1, min=1, max=4096, tooltip="The number of latent images in the batch." ), ], outputs=[io.Latent.Output()], ) @classmethod def execute(cls, seconds, batch_size) -> io.NodeOutput: length = round((seconds * 44100 / 2048) / 2) * 2 latent = torch.zeros([batch_size, 64, length], device=comfy.model_management.intermediate_device()) return io.NodeOutput({"samples": latent, "type": "audio"}) class LoadAudio(io.ComfyNodeV3): @classmethod def define_schema(cls): return io.SchemaV3( node_id="LoadAudio_V3", # frontend expects "LoadAudio" to work display_name="Load Audio _V3", # frontend ignores "display_name" for this node category="audio", inputs=[ io.Combo.Input("audio", upload=io.UploadType.audio, options=cls.get_files_options()), ], outputs=[io.Audio.Output()], ) @classmethod def get_files_options(cls) -> list[str]: input_dir = folder_paths.get_input_directory() return sorted(folder_paths.filter_files_content_types(os.listdir(input_dir), ["audio", "video"])) @classmethod def execute(cls, audio) -> io.NodeOutput: waveform, sample_rate = torchaudio.load(folder_paths.get_annotated_filepath(audio)) return io.NodeOutput({"waveform": waveform.unsqueeze(0), "sample_rate": sample_rate}) @classmethod def fingerprint_inputs(s, audio): image_path = folder_paths.get_annotated_filepath(audio) m = hashlib.sha256() with open(image_path, "rb") as f: m.update(f.read()) return m.digest().hex() @classmethod def validate_inputs(s, audio): if not folder_paths.exists_annotated_filepath(audio): return "Invalid audio file: {}".format(audio) return True class PreviewAudio(io.ComfyNodeV3): @classmethod def define_schema(cls): return io.SchemaV3( node_id="PreviewAudio_V3", # frontend expects "PreviewAudio" to work display_name="Preview Audio _V3", # frontend ignores "display_name" for this node category="audio", inputs=[ io.Audio.Input("audio"), ], hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo], is_output_node=True, ) @classmethod def execute(cls, audio) -> io.NodeOutput: return io.NodeOutput(ui=ui.PreviewAudio(audio, cls=cls)) class SaveAudioMP3(io.ComfyNodeV3): @classmethod def define_schema(cls): return io.SchemaV3( node_id="SaveAudioMP3_V3", # frontend expects "SaveAudioMP3" to work display_name="Save Audio(MP3) _V3", # frontend ignores "display_name" for this node category="audio", inputs=[ io.Audio.Input("audio"), io.String.Input("filename_prefix", default="audio/ComfyUI"), io.Combo.Input("quality", options=["V0", "128k", "320k"], default="V0"), ], hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo], is_output_node=True, ) @classmethod def execute(cls, audio, filename_prefix="ComfyUI", format="mp3", quality="V0") -> io.NodeOutput: return io.NodeOutput( ui=ui.AudioSaveHelper.get_save_audio_ui( audio, filename_prefix=filename_prefix, cls=cls, format=format, quality=quality ) ) class SaveAudioOpus(io.ComfyNodeV3): @classmethod def define_schema(cls): return io.SchemaV3( node_id="SaveAudioOpus_V3", # frontend expects "SaveAudioOpus" to work display_name="Save Audio(Opus) _V3", # frontend ignores "display_name" for this node category="audio", inputs=[ io.Audio.Input("audio"), io.String.Input("filename_prefix", default="audio/ComfyUI"), io.Combo.Input("quality", options=["64k", "96k", "128k", "192k", "320k"], default="128k"), ], hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo], is_output_node=True, ) @classmethod def execute(cls, audio, filename_prefix="ComfyUI", format="opus", quality="128k") -> io.NodeOutput: return io.NodeOutput( ui=ui.AudioSaveHelper.get_save_audio_ui( audio, filename_prefix=filename_prefix, cls=cls, format=format, quality=quality ) ) class SaveAudio(io.ComfyNodeV3): @classmethod def define_schema(cls): return io.SchemaV3( node_id="SaveAudio_V3", # frontend expects "SaveAudio" to work display_name="Save Audio _V3", # frontend ignores "display_name" for this node category="audio", inputs=[ io.Audio.Input("audio"), io.String.Input("filename_prefix", default="audio/ComfyUI"), ], hidden=[io.Hidden.prompt, io.Hidden.extra_pnginfo], is_output_node=True, ) @classmethod def execute(cls, audio, filename_prefix="ComfyUI", format="flac") -> io.NodeOutput: return io.NodeOutput( ui=ui.AudioSaveHelper.get_save_audio_ui(audio, filename_prefix=filename_prefix, cls=cls, format=format) ) class VAEDecodeAudio(io.ComfyNodeV3): @classmethod def define_schema(cls): return io.SchemaV3( node_id="VAEDecodeAudio_V3", category="latent/audio", inputs=[ io.Latent.Input(id="samples"), io.Vae.Input(id="vae"), ], outputs=[io.Audio.Output()], ) @classmethod def execute(cls, vae, samples) -> io.NodeOutput: audio = vae.decode(samples["samples"]).movedim(-1, 1) std = torch.std(audio, dim=[1, 2], keepdim=True) * 5.0 std[std < 1.0] = 1.0 audio /= std return io.NodeOutput({"waveform": audio, "sample_rate": 44100}) class VAEEncodeAudio(io.ComfyNodeV3): @classmethod def define_schema(cls): return io.SchemaV3( node_id="VAEEncodeAudio_V3", category="latent/audio", inputs=[ io.Audio.Input(id="audio"), io.Vae.Input(id="vae"), ], outputs=[io.Latent.Output()], ) @classmethod def execute(cls, vae, audio) -> io.NodeOutput: sample_rate = audio["sample_rate"] if 44100 != sample_rate: waveform = torchaudio.functional.resample(audio["waveform"], sample_rate, 44100) else: waveform = audio["waveform"] return io.NodeOutput({"samples": vae.encode(waveform.movedim(1, -1))}) NODES_LIST: list[type[io.ComfyNodeV3]] = [ ConditioningStableAudio, EmptyLatentAudio, LoadAudio, PreviewAudio, SaveAudioMP3, SaveAudioOpus, SaveAudio, VAEDecodeAudio, VAEEncodeAudio, ]