# from: https://research.nvidia.com/labs/toronto-ai/AlignYourSteps/howto.html import numpy as np import torch from comfy_api.v3 import io NOISE_LEVELS = { "SD1": [ 14.6146412293, 6.4745760956, 3.8636745985, 2.6946151520, 1.8841921177, 1.3943805092, 0.9642583904, 0.6523686016, 0.3977456272, 0.1515232662, 0.0291671582, ], "SDXL": [ 14.6146412293, 6.3184485287, 3.7681790315, 2.1811480769, 1.3405244945, 0.8620721141, 0.5550693289, 0.3798540708, 0.2332364134, 0.1114188177, 0.0291671582, ], "SVD": [700.00, 54.5, 15.886, 7.977, 4.248, 1.789, 0.981, 0.403, 0.173, 0.034, 0.002], } def loglinear_interp(t_steps, num_steps): """Performs log-linear interpolation of a given array of decreasing numbers.""" xs = np.linspace(0, 1, len(t_steps)) ys = np.log(t_steps[::-1]) new_xs = np.linspace(0, 1, num_steps) new_ys = np.interp(new_xs, xs, ys) return np.exp(new_ys)[::-1].copy() class AlignYourStepsScheduler(io.ComfyNodeV3): @classmethod def define_schema(cls) -> io.SchemaV3: return io.SchemaV3( node_id="AlignYourStepsScheduler_V3", category="sampling/custom_sampling/schedulers", inputs=[ io.Combo.Input("model_type", options=["SD1", "SDXL", "SVD"]), io.Int.Input("steps", default=10, min=1, max=10000), io.Float.Input("denoise", default=1.0, min=0.0, max=1.0, step=0.01), ], outputs=[io.Sigmas.Output()], ) @classmethod def execute(cls, model_type, steps, denoise) -> io.NodeOutput: total_steps = steps if denoise < 1.0: if denoise <= 0.0: return io.NodeOutput(torch.FloatTensor([])) total_steps = round(steps * denoise) sigmas = NOISE_LEVELS[model_type][:] if (steps + 1) != len(sigmas): sigmas = loglinear_interp(sigmas, steps + 1) sigmas = sigmas[-(total_steps + 1) :] sigmas[-1] = 0 return io.NodeOutput(torch.FloatTensor(sigmas)) NODES_LIST = [ AlignYourStepsScheduler, ]