import torch import folder_paths import comfy.utils import comfy.ops import comfy.model_management import comfy.ldm.common_dit import comfy.latent_formats class BlockWiseControlBlock(torch.nn.Module): # [linear, gelu, linear] def __init__(self, dim: int = 3072, device=None, dtype=None, operations=None): super().__init__() self.x_rms = operations.RMSNorm(dim, eps=1e-6) self.y_rms = operations.RMSNorm(dim, eps=1e-6) self.input_proj = operations.Linear(dim, dim) self.act = torch.nn.GELU() self.output_proj = operations.Linear(dim, dim) def forward(self, x, y): x, y = self.x_rms(x), self.y_rms(y) x = self.input_proj(x + y) x = self.act(x) x = self.output_proj(x) return x class QwenImageBlockWiseControlNet(torch.nn.Module): def __init__( self, num_layers: int = 60, in_dim: int = 64, additional_in_dim: int = 0, dim: int = 3072, device=None, dtype=None, operations=None ): super().__init__() self.additional_in_dim = additional_in_dim self.img_in = operations.Linear(in_dim + additional_in_dim, dim, device=device, dtype=dtype) self.controlnet_blocks = torch.nn.ModuleList( [ BlockWiseControlBlock(dim, device=device, dtype=dtype, operations=operations) for _ in range(num_layers) ] ) def process_input_latent_image(self, latent_image): latent_image[:, :16] = comfy.latent_formats.Wan21().process_in(latent_image[:, :16]) patch_size = 2 hidden_states = comfy.ldm.common_dit.pad_to_patch_size(latent_image, (1, patch_size, patch_size)) orig_shape = hidden_states.shape hidden_states = hidden_states.view(orig_shape[0], orig_shape[1], orig_shape[-2] // 2, 2, orig_shape[-1] // 2, 2) hidden_states = hidden_states.permute(0, 2, 4, 1, 3, 5) hidden_states = hidden_states.reshape(orig_shape[0], (orig_shape[-2] // 2) * (orig_shape[-1] // 2), orig_shape[1] * 4) return self.img_in(hidden_states) def control_block(self, img, controlnet_conditioning, block_id): return self.controlnet_blocks[block_id](img, controlnet_conditioning) class ModelPatchLoader: @classmethod def INPUT_TYPES(s): return {"required": { "name": (folder_paths.get_filename_list("model_patches"), ), }} RETURN_TYPES = ("MODEL_PATCH",) FUNCTION = "load_model_patch" EXPERIMENTAL = True CATEGORY = "advanced/loaders" def load_model_patch(self, name): model_patch_path = folder_paths.get_full_path_or_raise("model_patches", name) sd = comfy.utils.load_torch_file(model_patch_path, safe_load=True) dtype = comfy.utils.weight_dtype(sd) # TODO: this node will work with more types of model patches additional_in_dim = sd["img_in.weight"].shape[1] - 64 model = QwenImageBlockWiseControlNet(additional_in_dim=additional_in_dim, device=comfy.model_management.unet_offload_device(), dtype=dtype, operations=comfy.ops.manual_cast) model.load_state_dict(sd) model = comfy.model_patcher.ModelPatcher(model, load_device=comfy.model_management.get_torch_device(), offload_device=comfy.model_management.unet_offload_device()) return (model,) class DiffSynthCnetPatch: def __init__(self, model_patch, vae, image, strength, mask=None): self.model_patch = model_patch self.vae = vae self.image = image self.strength = strength self.mask = mask self.encoded_image = model_patch.model.process_input_latent_image(self.encode_latent_cond(image)) def encode_latent_cond(self, image): latent_image = self.vae.encode(image) if self.model_patch.model.additional_in_dim > 0: if self.mask is None: mask_ = torch.ones_like(latent_image)[:, :self.model_patch.model.additional_in_dim // 4] else: mask_ = comfy.utils.common_upscale(self.mask.mean(dim=1, keepdim=True), latent_image.shape[-1], latent_image.shape[-2], "bilinear", "none") return torch.cat([latent_image, mask_], dim=1) else: return latent_image def __call__(self, kwargs): x = kwargs.get("x") img = kwargs.get("img") block_index = kwargs.get("block_index") if self.encoded_image is None or self.encoded_image.shape[1:] != img.shape[1:]: spacial_compression = self.vae.spacial_compression_encode() image_scaled = comfy.utils.common_upscale(self.image.movedim(-1, 1), x.shape[-1] * spacial_compression, x.shape[-2] * spacial_compression, "area", "center") loaded_models = comfy.model_management.loaded_models(only_currently_used=True) self.encoded_image = self.model_patch.model.process_input_latent_image(self.encode_latent_cond(image_scaled.movedim(1, -1))) comfy.model_management.load_models_gpu(loaded_models) img = img + (self.model_patch.model.control_block(img, self.encoded_image.to(img.dtype), block_index) * self.strength) kwargs['img'] = img return kwargs def to(self, device_or_dtype): if isinstance(device_or_dtype, torch.device): self.encoded_image = self.encoded_image.to(device_or_dtype) return self def models(self): return [self.model_patch] class QwenImageDiffsynthControlnet: @classmethod def INPUT_TYPES(s): return {"required": { "model": ("MODEL",), "model_patch": ("MODEL_PATCH",), "vae": ("VAE",), "image": ("IMAGE",), "strength": ("FLOAT", {"default": 1.0, "min": -10.0, "max": 10.0, "step": 0.01}), }, "optional": {"mask": ("MASK",)}} RETURN_TYPES = ("MODEL",) FUNCTION = "diffsynth_controlnet" EXPERIMENTAL = True CATEGORY = "advanced/loaders/qwen" def diffsynth_controlnet(self, model, model_patch, vae, image, strength, mask=None): model_patched = model.clone() image = image[:, :, :, :3] if mask is not None: if mask.ndim == 3: mask = mask.unsqueeze(1) if mask.ndim == 4: mask = mask.unsqueeze(2) mask = 1.0 - mask model_patched.set_model_double_block_patch(DiffSynthCnetPatch(model_patch, vae, image, strength, mask)) return (model_patched,) NODE_CLASS_MAPPINGS = { "ModelPatchLoader": ModelPatchLoader, "QwenImageDiffsynthControlnet": QwenImageDiffsynthControlnet, }